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Weakly-supervised visual learning (WSVL)
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¨ Weakly-supervised visual learning is a new trend in CVPR

Search keyword “weakly supervised” and “weakly-supervised” in CVPR 17&18

Keyword Weakly
supervised

Weakly-
supervised

In total

cvpr17 14 5 19/783

cvpr18 19 10 29/979



Weakly supervised semantic segmentation
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¨ The task of WSSS

{Aeroplane} {Bus} {Person,	Motorbike} {Ship}

Training	Data

Segmentation	
Network

Weakly-Supervised	
Learning

Testing	Data

WSSS overcomes the deficiency problem in semantic segmentation labelling. 
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The development of WSSS

CAM, Zhou et al, CVPR 16MIL-FCN, Pathak et al, 
Arxiv 14, ICLRW 15

Proposal classification, 
Qi et al, ECCV 16

STC, Wei et al, TPAMI 15

Built-in FG/BG Model 
Saleh et al, ECCV 16

Adversarial erasing, 
Wei et al, CVPR 17

Figures are from the original papers



The development of WSSS
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Seeding loss, 
Kolesnikov et al, ECCV 17

Saliency guided labler, 
Oh et al, CVPR 17

1. Multi-instance learning
2. Saliency guided
3. Built-in network information
4. Adversarial learning
5. Seeding loss

Figures are from the original papers



The basic framework in our paper
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Step 1：Foreground seeds from CAM

Step 2：Background seeds derived salient region detection [Jiang et al, CVPR13]

Figures are from the original papers



The basic framework in our paper
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Step 3：FCN with seeding loss

FCN

FCN

Step 4：Retrain with FCN



A small trick: balanced seeding loss
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Balance the weights between foreground and background



However, the seeds are sparse
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In practice, 
to retain the 
precision of 
seeds, there 
are about 
40% pixels 
have labels. 
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How to improve the quality and quantity of seeds
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¨ Better “CAM” network
¨ Saliency guidance

¨ Adversarial erasing

¨ …

¨ Online seeded region growing
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Deep seeded region growing

Segmentation
Network 

Classification
network

Seeding 
Loss

Boundary 
Loss

Downscale

CRF

Seed

Seed

seeded region growing

Region growing criteria:

1. Directly use deep prob features
2. Cheap to compute
3. Online supervision updating

Progressively check the neighborhood pixels



Deep seeded region growing
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Deep seeded region growing
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Experiments
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¨ Datasets
¤ PASCAL VOC 2012, 10582 train, 1449 val, 1456 test
¤ COCO, 80k train, 40k val

¨ mIoU criterion

¨ Classification network: VGG-16

¨ Segmentation network: DeepLab-ASPP



Main Results
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PASCAL VOC

COCO



Ablation studies
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The contributions of Balanced seeding loss, DSRG & Retrain



Ablation studies
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Image Ground	Truth		w/o	DSRG +DSRG



Ablation studies
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The quality of the dynamic supervision (%) 
with respect to the epochs. 

Performance on PASCAL val dataset
for different θ	



Video demo
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Discussion
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¨ How to interpret DSRG
¤ A Neural network generates new label by itself.
¤ The inner structure of image/video helps, e.g., [Ahn & Kwak, 

CVPR 18].

¤ From the perspective of SSL, pseudo label/supervision 
[Lee, ICMLw 13, Wang et al, MM 16] works. 



Discussion
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¨ Current limitations of WSSS
¤ Hard to obtain precise boundaries
¤ Does not work well in complex dataset, e.g., COCO & 

Kitti

¨ Let deep networks know what is an object, e.g., 
unsupervised learning from video.

¨ Weakly and semi-supervised (WASS) visual learning.
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¨ The paper is available at 
http://www.xinggangw.info/pubs/cvpr18-dsrg.pdf

¨ Codes will be available at 
https://github.com/speedinghzl/DSRG



Thanks for your attention!
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