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Weakly-supervised visual learning (WSVL)

0 Weakly-supervised visual learning is a new trend in CVPR

Search keyword “weakly supervised” and “weakly-supervised” in CVPR 17&18

Keyword Weakly Weakly-

supervised supervised

cvprl?7 14 5 19/783
cvpr18 19 10 29/979

Huazhong University of Science and Technology



Weakly supervised semantic segmentation
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1 The task of WSSS
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WSSS overcomes the deficiency problem in semantic segmentation labelling.

Huazhong University of Science and Technology



The development

of WSSS
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MIL-FCN, Pathak et al,
Arxiv 14, ICLRW 15

Proposal classification,
Qi et al, ECCV 16
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Built-in FG /BG Model
Saleh et al, ECCV 16
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Adversarial erasing,
Wei et al, CYPR 17

Figures are from the original papers



The development of WSSS
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Seeding loss, Saliency guided labler,
Kolesnikov et al, ECCV 17 Oh et al, CVPR 17
1. Multi-instance learning
2. Saliency guided
3. Built-in networkinformation
4. Adversarial learning
5. Seedingloss
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The basic framework in our paper

Step 1: Foreground seeds from CAM
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Step 2: Background seeds derived salient region detection [Jiang et al, CVPR1 3]
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The basic framework in our paper

I

Step 3: FCN with seeding loss
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A small trick: balanced seeding loss

Balance the weights between foreground and background
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However, the seeds are sparse

Image

In practice,

to retain the
precision of
seeds, there

Seeds

are about
40% pixels
have labels.
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How to improve the quality and quantity of seeds

0 Better “CAM” network
0 Saliency guidance

0 Adversarial erasing

0 Online seeded region growing
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Deep seeded region growing

Seeding
Loss

Downscale

Region growing criteria:

TRUE H,. >0, and 1. Directly use deep prob features
P(H,,0.) = ¢ = argmax Hy,c, 2. Cheapto compute
FALSE otherwise. 3. Online supervision updating

Progressively check the neighborhood pixels

Huazhong University of Science and Technology




Deep seeded region growing

Training Ground
Truth

Image
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Deep seeded region growing

Algorithm 2 Deep Seeded Region Growing Training

N
=1

Input: Training data D = {(1;, S;)}
Initialize: initialize M, t = 1.
while (¢ < max_iter) do
Select a sample {/;,S;} from input data randomly;
H; = M;_1(1;) ;
Perform G; = DSRG(S;, H;) for seed expansion
Compute the loss = (G, , H;)
back propagate the error and update model from M;_,
to Mt
9: end while
10: Output: M
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Experiments

0 Datasets
o PASCAL VOC 2012, 10582 train, 1449 val, 1456 test
o COCO, 80k train, 40k val

1 mloU criterion

01 Classification network: VGG-16

0 Segmentation network: DeeplLab-ASPP
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Main Results

PASCAL VOC
Method Training Val Test
DCSM|2] 10k 44.1 451
BFBPI[3] 10k  46.6 48.0
STC [4] 50k 49.8 51.2
SEC [5] 10k  50.7 51.7
AF-SS [6] 10k  52.6 52.7
Combining Cues [7] 10k 52.8 53.7
AE-PSL [8] 10k  55.0 55.7
DCSP [9] 10k  58.6 59.2
DSRG (VGG16) 10k  59.0 60.4
DSRG (Resnet101) 10k 61.4 63.2

COCO
Method Val
BFBP[3] 20.4
SEC [5] 22.4

DSRG (Ours) 26.0
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Ablation studies

The contributions of Balanced seeding loss, DSRG & Retrain

Table 2. Comparison of mloU using different settings of our approach on VOC 2012 val set

=
L 2 S ) 8 s Qo F— Q.
o S L T =2 =2 @ = =2 = oy £ =2 £ s 9 s S
< =2 =X 5 & 2 3 ® ® = &3 £ o © g2 8 =2 2 B E s
Method| 2 & £ £ £ £ =2 o S © o & =- £ £ &a & = z £ Z mloU

baseline |82.5 67.5 23.2 65.7 29.7 47.5 71.8 66.8 76.7 23.3 51.7 26.2 69.7 54.2 63.2 57.2 33.7 64.5 33.5 48.7 46.1| 52.5

+BSL [82.4 71.9 29.1 67.7 32.4 49.8 75.5 67.9 74.7 22.8 54.9 26.6 64.3 55.7 64.7 56.0 35.0 67.7 32.7 50.2 45.8| 53.6
+DSRG [86.6 70.5 28.8 70.6 34.7 55.7 74.9 70.1 80.2 24.1 63.6 24.8 76.6 64.1 64.9 72.3 38.5 68.7 35.8 51.8 51.9| 57.6
+Retrain|87.5 73.1 28.4 75.4 39.5 54.5 78.2 71.3 80.6 25.0 63.3 25.4 77.8 65.4 65.2 72.8 41.2 74.3 34.1 52.1 53.0| 59.0

Huazhong University of Science and Technology



Ablation studies

Image w/o DSRG +DSRG Ground Truth
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Ablation studies
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099 095 09 085 0.80

0.99 5745 5759 57.63 57.69 57.66
0.95 5743 5756 57.64 57.67 57.63
0.90 5723 5735 57.40 57.44 5745

Performance on PASCAL val dataset
for different O




Video demo
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Discussion

0 How to interpret DSRG
0 A Neural network generates new label by itself.

0 The inner structure of image/video helps, e.g., [Ahn & Kwak,
CVPR 18].

0 From the perspective of SSL, pseudo label /supervision
[Lee, ICMLw 13, Wang et al, MM 16] works.
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Discussion

0 Current limitations of WSSS
O Hard to obtain precise boundaries

0 Does not work well in complex dataset, e.g., COCO &
Kitti

0 Let deep networks know what is an object, e.g.,
unsupervised learning from video.

0 Weakly and semi-supervised (WASS) visual learning.
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0 The paper is available at
http: / /www.xinggangw.info /pubs/cvpr18-dsrg.pdf

0 Codes will be available at
https: / /github.com /speedinghzl /DSRG

Huazhong University of Science and Technology



Thanks for your attention!
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