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Abstract Contrastive language and image pre-training
(CLIP) achieves great success in various computer vision
tasks and also presents an opportune avenue for enhanc-
ing weakly-supervised image understanding with its large-
scale pre-trained knowledge. As an effective way to reduce
the reliance on pixel-level human-annotated labels, weakly-
supervised semantic segmentation (WSSS) aims to refine
the class activation map (CAM) and produce high-quality
pseudo masks. Weakly-supervised semantic segmentation
(WSSS) aims to refine the class activation map (CAM) as
pseudo masks, but heavily relies on inductive biases like
hand-crafted priors and digital image processing methods.
For the vision-language pre-trained model, i.e. CLIP, we
propose a novel text-to-pixel matching paradigm for WSSS.
However, directly applying CLIP to WSSS is challenging
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due to three critical problems: 1) the task gap between con-
trastive pre-training and WSSS CAM refinement, 2) lack-
ing text-to-pixel modeling to fully utilize the pre-trained
knowledge, and 3) the insufficient details owning to the %
down-sampling resolution of ViT. Thus, we propose Weak-
CLIP to address the problems and leverage the pre-trained
knowledge from CLIP to WSSS. Specifically, we first ad-
dress the task gap by proposing a visual adapter and learn-
able prompts to extract WSSS-specific representation. We
then design a co-attention matching module to model text-
to-pixel relationships. Finally, the pyramid adapter and text-
guided decoder are introduced to gather multi-level informa-
tion and integrate it with text guidance hierarchically. Weak-
CLIP provides an effective and parameter-efficient way to
transfer CLIP knowledge to refine CAM. Extensive experi-
ments demonstrate that Weak CLIP achieves the state-of-the-
art WSSS performance on standard benchmarks, i.e. , 74.0%
mloU on the val set of PASCAL VOC 2012 and 46.1%
mloU on the val set of COCO 2014. The source code and
model checkpoints are released at https://github.com/hustvl/
WeakCLIP.

Keywords Semantic Segmentation - Weakly-supervised
Learning - CAM Refinement - CLIP

1 Introduction

Weakly-supervised semantic segmentation (WSSS) is an
important task to reduce the pixel-level annotation burden
which leverages weak supervisions such as image-level clas-
sification labels (Ahn and Kwak, 2018; Kolesnikov and
Lampert, 2016; Pathak et al., 2015; Pinheiro and Collobert,
2015; Wang et al., 2020; Wei et al., 2017, 2018; Huang et al.,
2018; Jiang et al., 2019; Lee et al., 2019a), points (Bearman
et al., 2016), scribbles (Lin et al., 2016; Tang et al., 2018;
Vernaza and Chandraker, 2017), and bounding boxes (Dai


https://github.com/hustvl/WeakCLIP
https://github.com/hustvl/WeakCLIP

Lianghui Zhu et al

etal., 2015; Khoreva et al., 2017; Xu et al., 2015; Song et al.,
2019), to generate pseudo pixel-wise segmentation. Among
these weak supervisions, the most challenging one is WSSS
with only image-level labels. Image-level WSSS methods
typically require a class activation map (CAM) (Zhou et al.,
2016) to coarsely localize an object. As CAMs generated
from Deep Neural Networks (DNNs) are often noisy and
prone to errors, many methods (Huang et al., 2018; Feng
et al., 2021; Ahn and Kwak, 2018; Ahn et al., 2019) are
proposed to refine the CAM using hand-crafted priors (i.e.,
Random Walk (Ahn and Kwak, 2018)) or improved digital
image processing (DIP) algorithms (i.e., Seed Region Grow-
ing (Huang et al., 2018)). Refined CAM typically exhibits
more accurate semantic information compared to the orig-
inal CAM. As a result, it can serve as a valuable pseudo
mask for training fully-supervised semantic segmentation
networks. However, these methods heavily rely on induc-
tive biases from priors and improved DIP algorithms, which
will limit their performance and robustness. In this paper, we
investigate a CAM refinement method based on large-scale
pre-trained foundation models.

The work of CLIP (Radford et al., 2021), demonstrates
that the successful approach of task-agnostic large-scale pre-
training in Natural Language Processing (NLP) can be ef-
fectively transferred to Computer Vision (CV) tasks. There
are some studies that have explored the CLIP for weakly-
supervised semantic segmentation (WSSS). CLIMS (Xie
et al., 2022) employs CLIP-based loss functions as regu-
larization. And CLIP-ES (Lin et al., 2022) utilizes well-
designed text prompts and GradCAM (Selvaraju et al.,
2017) to enhance the quality of the class activation map
(CAM). Different from these methods, we propose to trans-
fer CLIP pre-trained knowledge to WSSS in a text-to-
pixel matching paradigm. With the exploration of this novel
paradigm, we find that there are three primary challenges in
leveraging CLIP for WSSS. 1) Task gap: the pre-training
objective of CLIP causes the vision encoder to focus more
on image-level representation, which is inconsistent with
the pixel-level understanding required in WSSS. 2) Lack-
ing text-to-pixel modeling: both CLIP and previous CLIP-
based WSSS methods lack explicit text-to-pixel model-
ing, which is crucial for effectively transferring pre-trained
knowledge to WSSS. 3) Insufficient details: the CLIP-ViT
model, with its % downsampling resolution, fails to pro-
vide sufficient spatial information, particularly fine details,
thus limiting the quality of CAM refinement.

To address the challenges mentioned above, we propose
WeakCLIP, a novel Weakly-supervised Semantic Segmen-
tation method that leverages the parameter-efficient CLIP
framework. In WeakCLIP, we tackle the task gap issue by
proposing the visual adapter and the learnable language
prompt to efficiently learn WSSS-specific visual and text
representations. Additionally, we introduce a text-to-pixel

co-attention matching module to learn contextually informa-
tive pixel and text representations, facilitating text-to-pixel
modeling for utilizing CLIP pre-trained knowledge. More-
over, we propose a pyramid adapter and text-guided decoder
to enhance the level of details and decode features with text-
guidance hierarchically. The proposed WeakCLIP primar-
ily utilizes scalable, large-scale, pre-trained vision-language
models. It can be enhanced further when combined with
more advanced models. Fig. 1 illustrates the distinctiveness
of the WeakCLIP scheme for WSSS compared to previ-
ous methods that rely on ImageNet pre-trained models for
backbone initialization. The proposed WeakCLIP leverages
the knowledge that exists in large-scale pre-trained vision-
language models into WSSS through text-pixel matching.
Experimental results on PASCAL VOC 2012 (Everingham
et al., 2010) and COCO 2014 (Lin et al., 2014) demonstrate
that the visual-language features extracted by WeakCLIP ex-
hibit superior semantic accuracy compared to deep visual
features used in previous WSSS methods.

The main contributions of this paper can be summarized
as follows:

— We present WeakCLIP, a novel approach that transforms
the weakly-supervised semantic segmentation paradigm
into a continuous text-to-pixel matching problem. This
transformation allows WeakCLIP to utilize natural lan-
guage guidance from large-scale pre-trained models, re-
ducing the dependence on hand-crafted priors.

— WeakCLIP proposes four key components: efficient
learnable prompts, a pyramid adapter, text-pixel co-
attention matching, and a text-guided decoder to ad-
dress the three major challenges encountered in applying
CLIP to WSSS, namely task gap, lacking text-to-pixel
modeling, and insufficient details.

— Extensive experiments demonstrate that WeakCLIP is
both effective and efficient. Through training only 14%
parameters, WeakCLIP surpasses the state-of-the-art
WSSS method on standard benchmarks, with 74.0%
mloU on PASCAL VOC 2012 (Everingham et al., 2010)
and 46.1% on COCO 2014 (Lin et al., 2014) validation
sets, respectively.

2 Related Work
2.1 Weakly-supervised Semantic Segmentation

In recent years, deep learning has witnessed remarkable
progress in semantic segmentation. However, the process
of annotating pixel-level ground truth for semantic segmen-
tation is time-consuming, limiting the practical application
development. To alleviate this burden, weakly-supervised
learning has emerged as an alternative annotation format
that requires weaker-level supervision. Numerous weakly-
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Fig. 1 The previous weakly-supervised semantic segmentation (WSSS) methods tend to have special designs for input, network, loss function,
supervision information, semantic expansion, etc. First of all, some methods choose to mine the semantic relationship between objects (Du et al.,
2022) or introduce web data (Shen et al., 2017; Wei et al., 2016) in terms of input. Secondly, in terms of network design, some approaches deployed
dual backbones with shared weights for multi-task training, such as the concurrent execution of WSSS and saliency prediction (Xu et al., 2021a; Du
et al., 2022). Then, in the selection of the loss function, in addition to the commonly used seeding loss (Huang et al., 2018) and energy loss (Zhang

et al., 2020a), the recently popular contrastive loss is applied (Du et al.,

2022). In terms of supervision information, some methods introduce

saliency supervision information (Lee et al., 2021d; Xu et al., 2021a; Yao et al., 2021) or the uncertainty of semantic information (Li et al., 2021a).

Finally, some use the additionally introduced location conspicuous (Zhang

et al., 2020b), AffinityNet (Ahn and Kwak, 2018), or other traditional

regional expansion methods (Huang et al., 2018; Feng et al., 2021) for semantic expansion. As a comparison, the proposed WeakCLIP is designed
around scalable pre-trained weights, making it more promising than WSSS methods that rely on hand-crafted priors. Furthermore, WeakCLIP
utilizes a novel paradigm of text-to-pixel matching, which efficiently transfers knowledge from pre-trained CLIP.

supervised semantic segmentation algorithms with promis-
ing performance have been proposed. These approaches
can be categorized based on the types of annotations used,
including bounding box-based methods (Dai et al., 2015;
Khoreva et al., 2017; Xu et al., 2015; Song et al., 2019),
scribble-based methods (Lin et al., 2016; Tang et al., 2018;
Vernaza and Chandraker, 2017), point-based methods (Bear-
man et al., 2016), and image-level label-based methods (Ahn
and Kwak, 2018; Kolesnikov and Lampert, 2016; Pathak
etal., 2015; Pinheiro and Collobert, 2015; Wang et al., 2020;
Wei et al., 2017, 2018; Huang et al., 2018; Jiang et al., 2019;
Lee et al., 2019a).

In this paper, we focus on weakly-supervised seman-
tic segmentation using image-level labels. This direction is

widely recognized as one of the most challenging aspects
in the field. Through the proposed WeakCLIP, high-quality
pseudo masks can be attained for the fully-supervised se-
mantic segmentation retraining.

2.2 Image-level Supervised Learning

Image-level labels are one of the most challenging and cost-
effective forms of annotation widely utilized in weakly-
supervised semantic segmentation (WSSS). However, gen-
erating accurate pseudo masks becomes challenging since
image-level labels do not provide explicit object localiza-
tion information. The class activation map (CAM) method
proposed by Zhou et al. (Zhou et al., 2016) is commonly
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used to detect discriminative object regions and generate lo-
calization maps known as “seeds.” Nonetheless, naive CAM
seeds often overlook significant parts of the objects, making
them unsuitable as direct proxy ground truth.

To alleviate this problem, various techniques have been
proposed. AE-PSL (Wei et al., 2017) introduces an itera-
tive erasing technique that updates regions by erasing previ-
ously computed pseudo masks in the raw image. MDC (Wei
et al., 2018) suggests using multiple layers with different di-
lation rates to expand activated regions. SEC (Kolesnikov
and Lampert, 2016) proposes a pipeline that incorporates
an expansion loss and a CRF constraint loss with the origi-
nal segmentation loss. DSRG (Huang et al., 2018) presents
a seeds region expanding algorithm to gradually enlarge
the initial seeds. FickleNet (Lee et al., 2019a) generates
and combines diverse activation maps using random con-
nections. OAA (Jiang et al., 2019) accumulates activation
maps and trains the CAM to achieve more complete esti-
mations. AffinityNet (Ahn and Kwak, 2018) employs CAM
seeds as proxy labels to train an affinity network and utilizes
random walks for region expansion. Building upon Affini-
tyNet, IRNet (Ahn et al., 2019) incorporates prior knowl-
edge that boundaries exist along the line between two pixels
with different categories. CONTA (Zhang et al., 2020b) em-
ploys causal inference to improve the quality of CAM seeds.
PMM (Li et al., 2021b) and URN (Li et al., 2021a) em-
ploy various strategies to suppress noise during CAM gen-
eration. Additionally, co-segmentation (Shen et al., 2017)
and STC (Wei et al., 2016) leverage web images to esti-
mate reliable pseudo masks. Some of these approaches rely
on hand-crafted rules and carefully adjusted hyperparame-
ters to generate better seeds, while others (Lee et al., 2019b;
Yang et al., 2018) utilize additional web data.

In contrast, we propose an effective approach that adapts
CLIP to transfer pre-trained knowledge as text guidance.
The proposed WeakCLIP contains less inductive bias and
exhibits promising potential for dealing with the challenges
in WSSS.

2.3 Large-scale Vision-Language Models

For a considerable period of time, pre-trained models on
large-scale datasets such as JFT (Sun et al., 2017) and Ki-
netics (Carreira and Zisserman, 2017) have been extensively
utilized across various domains. In recent times, an increas-
ing number of pre-trained models have become available,
including those based on supervised learning (Dosovitskiy
et al., 2020; He et al., 2016) and self-supervised learn-
ing (Caron et al., 2021; Chen et al., 2020b; He et al., 2020).

Furthermore, vision-language pre-training has garnered
significant attention (Lei et al., 2021; Lu et al., 2019; Su
et al., 2019). Notably, Radford et al. introduced CLIP (Rad-
ford et al., 2021), a large-scale pre-trained model trained

using contrastive learning on a vast collection of image-
text pairs. CLIP demonstrates remarkable transferability
across 30 classification datasets. Subsequently, several ex-
tensions of CLIP have been proposed to improve the clas-
sification ability of CLIP (e.g., CoOp (Zhou et al., 2021),
CLIP-Adapter (Gao et al., 2021), Tip-adapter (Zhang et al.,
2021b)). Additionally, there are methods that adapt CLIP
for different domains. For instance, DenseCLIP (Rao et al.,
2021) leverages CLIP to enable dense predictions for
fully-supervised object detection and semantic segmenta-
tion tasks. On the other hand, MaskCLIP achieves remark-
able results in annotation-free segmentation but exhibits lim-
ited performance on challenging benchmarks such as COCO
2014 (Lin et al., 2014).

In the WSSS domain, CLIMS (Xie et al., 2022) incor-
porates CLIP to introduce a set of auxiliary losses, aiding
the CAM network in distinguishing background from fore-
ground regions. CLIP-ES (Lin et al., 2022) adopts well-
designed text prompts and GradCAM (Selvaraju et al.,
2017) to enhance the quality of the class activation map
(CAM). However, these methods only utilize the text-to-
image matching of CLIP, which could not bring a precise
understanding at the pixel level.

Our work proposes a new text-to-pixel paradigm for WSSS
that utilizes CLIP pre-trained knowledge in a fine-grained
way. Furthermore, we identify the three key challenges of
applying CLIP to WSSS. In light of these challenges, we
propose WeakCLIP, a novel framework designed to address
those issues. By incorporating CLIP into the WSSS frame-
work, WeakCLIP aims to explore a promising WSSS method
that could benefit from the advances in large-scale pre-trained
models.

3 Method

To better describe the proposed method, we begin by review-
ing the methodologies employed in the original CLIP frame-
work (Radford et al., 2021). Subsequently, we present the
paradigm transformation of the weakly-supervised semantic
segmentation task. Then, we delve into the architecture of
our proposed framework, WeakCLIP. Finally, we detail the
process of generating high-quality proxy ground truth (PGT)
and outline the subsequent retraining procedure.

3.1 Preliminaries: Overview of CLIP

CLIP aligns images and text in semantic space using a con-
trastive loss. Its encoder combines a transformer for text
and either a ResNet or ViT for images. Notably, the CLIP-
ViT variant has attracted growing interest among researchers
because of its scalability. In the context of our study, we
specifically investigate the potential of CLIP-ViT within
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the weakly-supervised semantic segmentation (WSSS) do-
main, aiming to enhance the quality and accuracy of pseudo-
labels, particularly in the case of coarse class activation map
(CAM).

CLIP utilizes 400 million image-text pairs for pre-
training and demonstrates strong knowledge transferability.
For downstream classification tasks, CLIP generates repre-
sentations for both textual categories and images, enabling
zero-shot classification by computing the similarity between
the category and image representations. This approach of
computing text and image similarity provides a generaliz-
able method for transferring knowledge from pre-trained
models to specific tasks. Previous studies utilized the text-
to-image matching ability of CLIP to boost WSSS perfor-
mance. For example, CLIMS (Xie et al., 2022) incorpo-
rates CLIP into IRNet, introducing additional losses and en-
hancing CAM quality. Similarly, CLIP-ES (Lin et al., 2022)
merges CLIP with GradCAM (Selvaraju et al., 2017) and
utilizes a specific prompt to achieve an improved CAM.
These works lead to an interesting question: Can CLIP’s
matching capability be leveraged pixel by pixel to enhance
pseudo-labels as a highly generalizable semantic inference
method?

Addressing this question poses several challenges.
Firstly, how to leverage CLIP through text-to-pixel match-
ing is an under-explored area for WSSS. While text-to-pixel
matching approaches achieved promising results, we argue
that the text-to-pixel matching approach, akin to the pre-
training objective, offers a more direct, effective, and ro-
bust method for transferring knowledge from CLIP. Sec-
ondly, applying CLIP to WSSS presents challenges such as
the task gap, lacking text-to-pixel modeling, and insufficient
details. Consequently, leveraging CLIP through text-to-pixel
matching for WSSS is crucial but challenging, which offers
a promising way to improve the quality of pseudo labels.

3.2 Text-to-pixel Matching Paradigm for WSSS

The proposed text-to-pixel matching paradigm differs sig-
nificantly from previous CLIP-based WSSS approaches (Lin
et al., 2022; Xie et al., 2022). These previous methods only
deploy the text-to-image matching that lacks the pixel-level
fine-grained representation. To solve this problem, we pro-
pose text-to-pixel matching to query similarities at pixel
level.

Given [ as an input image, we first extract its multi-
layer feature maps using the image encoder. We employ
the CLIP pre-trained ViT-B network as the backbone and
consider its multi-layer outputs as the features of . For the
multi-layers of the transformer, we divide them into stages,
with each stage encompassing three transformer layers. We
represent the feature maps from each stage as f;, where
i € {1,2,3,4} and the shape of f; is C' x H x W. The

size of f; remains consistent from 1 to 4. Then, CLIP in-
corporates a projection layer after the last transformer stage,
projecting the embeddings into the projected dimension D.

{fi}:q)image (1)726{174} (D
fp = Proj(fa), 2
fzncls = Proj(f4,cls). 3)

Here, ®j,,6c represents the CLIP ViT-B image encoder,
and ¢ denotes the stage index of the encoder. Proj represents
the projection layer, and f, corresponds to the output of the
projection layer. We refer to the class token as f4 5, and the
projected class token as f, ¢;s. Original CLIP utilizes f;, o5
as the whole image representation, and calculates the cosine
similarity with the projected text representation ¢, for the
classification task.

Through our experiments, we discover two important
properties of the projected embeddings f,, generated by the
CLIP image encoder. Firstly, as the projected embeddings
of fa, f, retains sufficient spatial information to serve as
the feature maps. Secondly, due to the symmetry of the self-
attention layer with respect to each input element, f, ex-
hibits similar characteristics to the classification representa-
tion fj, o5, as they are both mapped to the same semantic
space.

Building upon these observations, we define the pro-
posed text-to-pixel matching operation as follows:

_ tp i fp
l[tpll2 x I fpll2”

where %, is projected text embeddings with a shape of K x
D (K is the number of categories), f, is projected feature
maps with a shape of D x H x W, and A is the text-to-pixel
matched embeddings with a shape of K x H x W.

A = Match(t,, fp) “4)

3.3 The WeakCLIP Framework

The proposed WeakCLIP framework, as shown in Fig. 2,
consists of the learnable prompt, pyramid adapter, co-
attention matching module, text-guided decoder, and WSSS
losses. First, we introduce the learnable prompt we used to
extract WSSS-specific text descriptions. Next, we utilize the
pyramid adapter to extract fine-grained visual features for
WSSS. Then, we perform co-attention matching to model
the text-to-pixel relationships as text guidance. Following
this, we use a text-guided decoder to incorporate text guid-
ance with adapter output features. Last, we introduce the
WSSS losses.

3.3.1 Learnable Prompt for Text Representation

Prompt engineering is important for vision-language mod-
els, i.e., CLIP. CLIP-ES (Lin et al., 2022) and CLIMS (Xie
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Fig. 2 The training scheme for the proposed WeakCLIP. Firstly, we use the learnable embeddings {le, }(n € 1,..., N) to enhance the class
text input. Next, text and image inputs are translated into two kinds of projected embeddings with the same dimension by CLIP encoders. Then,
we apply co-attention matching on the cross-domain embeddings to get co-attention-matched embeddings as text guidance. Subsequently, we use
the pyramid adapter to learn WSSS-specific fine-grained image representations and decode image representations with the help of text guidance.

Finally, we supervise WeakCLIP with coarse CAM seeds.

et al., 2022) use fixed prompt templates to construct text
input for a whole image. However, finding a proper fixed
template that could satisfy the need for a pixel-level un-
derstanding of WSSS is difficult. Inspired by CoOp (Zhou
et al., 2021) and CLIP-Adapter (Gao et al., 2021), we pro-
pose learnable embeddings as adaptive prompts to address
this problem. We first tokenize and embed the class text into
K class text embeddings {CLASS;}(k € 1,..., K), each
of which has a shape of L x C'. Here, L is the context length
of class text tokens, and C is the transformer width. Next,
we randomly initialize N learnable embeddings {le,, }(n €
1,...,N) as the learnable prompts, each of which has a
shape of 1 x C'. Subsequently, the learnable embeddings are
spliced in front of the class text embeddings and they are
used as the input embeddings {¢x}(k € 1,..., K), each of
which has a shape of (N + L) x C. Specifically, the input
embeddings {¢x}(k € 1,...,K) given to the text encoder
are designed with the following form:

tr = [lel,leg,...JeN,CLASSk]. (5)

Then, the text encoder processes the input embeddings
{tx}(k € 1,..., K) and selects the [EOT] tokens to repre-
sent the corresponding class. Finally, we splice the selected
[EOT] tokens into a whole and project them to ¢,, which
has a shape of K x D.

tp = Proj(Prext ({tr})), (6)

where @y represents the CLIP text encoder.
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Fig. 3 The structure of our proposed pyramid adapter. The resolution
of input features {f;}(s € {1,...,4}) is %6 of the input image.
Through the independent processing of each stage, the proposed pyra-

mid adapter outputs features { f; (i € {1,...,4}) with resolutions of
1 i
4’8’16 32"

3.3.2 Pyramid Adapter for Image Representation

Limited by the training objective of CLIP, its visual encoder
concentrates more on the whole image content than the fore-
ground objects defined by the WSSS task. Besides, another
problem stems from the low-resolution problem of CLIP
ViT, which also limits its performance in fine-grained under-
standing. To tackle these problems, we propose a pyramid
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adapter that operates independently of the CLIP image en-
coder, facilitates the incremental acquisition of knowledge
in the WSSS domain, and employs a hierarchical encoding
approach to capture multi-level features.

As shown in Fig. 3, the proposed pyramid adapter com-
prises lightweight parameters, allowing for independent fea-
ture processing across different resolutions. The pyramid
adapter first takes feature maps {f;}(i € {1,...,4}) from
various transformer layers as input. Subsequently, it per-
forms up-sampling on f; and f> to the resolutions of % and
% of the original image, respectively, utilizing transposed
convolutional operators (Zeiler et al., 2010). Then, the fea-
ture map f, is down-sampled to 3—12 resolution of the orig-
inal image using max pooling operators. Finally, the pyra-
mid adapter generates a set of features { f; }(i € {1,...,4})
across different resolutions, effectively incorporating both
low-level details and high-level representations. Notably, by
training the lightweight adapter for pyramid visual repre-
sentation learning, we avoid fine-tuning CLIP which may
destroy the pre-trained knowledge.

WeakCLIP Ground Truth

Images Original CLIP

5

Fig. 4 Comparison of matching results. Original CLIP has many noisy
matching activations in the background regions. The proposed Weak-
CLIP with co-attention matching module provides the text-to-pixel
matching for WSSS and achieves better activation results.

3.3.3 Co-Attention Matching for Text Guidance

Text-to-pixel matching is the key motivation of the proposed
WeakCLIP to make full use of CLIP pre-trained knowledge.
As shown in Fig. 4, since the original CLIP only has the
modeling of text-to-image matching, directly using text-to-
pixel matching leads to noisy matching results. To solve this
problem, we propose co-attention matching to model the
text-to-pixel matching for WSSS.

The proposed co-attention matching module utilizes
two cross-attention modules to model text-to-pixel relation-
ships and pixel-to-text relationships, respectively. At first,

as shown in Fig. 2, the projected text embeddings ¢, and
projected image embeddings f, serve as key and value in
two different cross-attention modules, respectively. Then,
the text and image output from the cross-attention modules
are fused with the original ¢, and f, through residual con-
nections.

t, = CrossAttn(t,, fp) * a + 1, @)
[, = CrossAttn(fy, 1) * B+ fp, (8)

where ¢7 and f, represent the updated text embeddings and
image embeddings, respectively. CrossAttn(-,-) denotes
the cross-attention operation, while o and [ are learnable
temperatures that balance the influence of cross-attention
output. Lastly, we perform text-to-image matching between
the updated text embeddings ¢, and updated image embed-
dings f, to get the co-attention-matched embeddings A as
follows:

A" = Match(t, f7), )

where the shape of NisK x HxW.
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Fig. 5 The structure of the text-guided decoder. We first interpolate
the matched embeddings X' to {\;}(s € {1,...,4}) corresponding
to the sizes of the pyramid image features { f; } (i € {1,...,4}). Then
we decode {\;} and {f;} hierarchically to get the final prediction P.
Notably, the “C.B.R.” block represents the “Conv-BN-ReLU” layer.

3.3.4 Text-Guided Decoder for Hierarchical Decoding

To further address the resolution limitation associated with
CLIP ViT-B, and integrate adapter output features { f; } and
co-attention-matched embeddings X', we introduce a text-
guided decoder as shown in Fig. 5.

In the text-guided decoder Decoderg, we first interpo-
late the co-attention-matched embeddings X to sizes corre-
sponding to the adapter output features {f; }. {\;} denotes
the collections of co-attention-matched embeddings at dif-
ferent spatial sizes. We then concatenate the corresponding
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image features from { fi, } with the co-attention-matched em-
beddings from {,}, and finally decode them to obtain the
segmentation prediction P.

P = Decoder, ({f{}, {/\;}) e {l,...4). (10)

The hierarchical fusion of adapter output features and
co-attention-matched embeddings in WeakCLIP results in
more robust segmentation predictions, particularly in seg-
menting at the details. During training, we compute the
WSSS losses using P and CAM seeds. During inference,
we apply the arg max operation to P to obtain the final seg-
mentation result S as follows:

S = argmax (P) . (11)
3.3.5 WSSS Losses

For all our experiments, we adopt the WSSS losses used in
DSRG (Huang et al., 2018). The WSSS losses comprise two
components: a balanced seeding loss and a boundary loss.
The balanced seeding loss computes the weighted cross-
entropy loss between the segmentation prediction P and the
CAM seeds. The boundary loss first applies conditional ran-
dom field (CRF) (Kridhenbiihl and Koltun, 2011) processing
to refine the object boundaries in the segmentation predic-
tion P. It then calculates the Kullback-Leibler divergence
loss between the CRF-refined results and the segmentation
prediction P.

In WSSS tasks, the balanced seed loss function is com-
monly employed to quantify the discrepancy between pre-
dictions and ground truth. It utilizes two normalization coef-
ficients to balance the loss contribution from the foreground
and background. Let K represent the collection of classes
in the image (excluding the background), and K denote the
background class. We define M}, as the set of pixels classi-
fied as class k, and P, j, as the segmentation prediction for
class k at position u. The balanced seeding loss is defined as
follows:

Lseed: Z ‘ |Z Z IOgPuk
ke K keK uweM;, (12)
D Pun
Z’CGK‘ M| ke R ue My

The Kullback-Leibler divergence is a measure of dissim-
ilarity between two probability distributions. In our case,
we utilize the Kullback-Leibler divergence to quantify the
disparity between the segmentation prediction and the out-
come of CRF refinement. Given the original image I and the
segmentation prediction P as inputs, we denote the CRF-
processed result as ¥, (I, P). Here, n represents the total

number of positions. The boundary loss function is defined
as follows:

Lboundary -

ZZ%,JP %{;P). (13)

u=1keK ’

3.4 Pseudo Mask Generation and Retrain

We generate high-quality pseudo masks using the trained
WeakCLIP network and subsequently perform retraining.
To extract the pseudo masks from the segmentation results
produced by WeakCLIP, we employ a straightforward ap-
proach. When the inference result S includes a category that
is not present in the image-level label, we assign an un-
known label of 255 to it.

ShU)7 Sh w € K

255, Spw & K (14)

PseudoMask(S) = {

where h and w represent the image coordinates, .S is the
inference result obtained from WeakCLIP, and K is the set
containing the class labels corresponding to the images. This
approach helps prevent incorrect labels from misleading the
retraining process.

Finally, we utilize the high-quality pseudo masks gen-
erated by WeakCLIP to perform fully-supervised segmen-
tation. To ensure a fair comparison, we follow the retrain-
ing settings of MCTformer (Xu et al., 2022) and employ the
DeepLabvl (Wu et al., 2019) network architecture.

4 Experiments
4.1 Datasets and Baseline

Datasets: We evaluate our approach on the PASCAL VOC
2012 dataset (Everingham et al., 2010) and the COCO 2014
dataset (Lin et al., 2014). The PASCAL VOC 2012 dataset
consists of 20 foreground objects and one background ob-
ject. It is divided into three parts: a training set with 1464
images, a validation set with 1449 images, and a test set with
1456 images. To increase the training set, we incorporate the
SBD annotations (Hariharan et al., 2011), resulting in a total
of 10582 training images. The COCO14 dataset contains 90
categories, with 80 valid foreground objects for segmenta-
tion. It has a validation set with 40137 images and a train set
with 82081 images. We use the mean intersection over union
(mIoU) metric to evaluate the segmentation performance.
Baseline: We use the CAM seeds generated by MCT-
former (Xu et al., 2022) as a baseline. We train Weak CLIP
model with MCTformer seeds, and generate high-quality
pseudo masks.
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4.2 Implementation Details

In our experiments, we first refine the MCTformer CAM
seeds by the proposed WeakCLIP method. Specifically, we
employ ViT-B (Dosovitskiy et al., 2020) as the backbone
architecture and use the AdamW (Loshchilov and Hutter,
2017) optimizer. We use a learning rate of le-4 and weight
decay of 3e-5. During inference, we apply multi-scale and
flip strategies, as well as dense CRF for post-processing.
After obtaining the pseudo masks, we proceed with the
retraining step using the DeeplabV1 (Chen et al., 2014)
framework based on the ResNet38 (Wu et al., 2019).

4.3 Comparison with State-of-the-arts
4.3.1 PASCAL VOC 2012

We present the quantitative results of CAM and pseudo
masks for PASCAL VOC 2012 in Table 1. In the second col-
umn, it can be observed that the CAM supervision of Weak-
CLIP is the same as MCTformer (Xu et al., 2022), but lower
than ViT-PCM by 1.9% mloU. The third column demon-
strates the quality of the pseudo masks obtained through
CAM refinement. Our results exhibit a significant improve-
ment of 8.1% over the baseline MCTformer (Xu et al., 2022)
and 5.0% over AMN (Lee et al., 2022b).

Table 1 Evaluation of the CAM and the corresponding pseudo seg-
mentation ground-truth mask (Mask) in terms of mloU (%) on the
PASCAL VOC 2012 train set. We mark the best results in bold.

Method CAM Mask
BES chen etal., 20200) 49.6 67.2
SC-CAM Chang et al., 2020) 50.9 63.4
SEAM (Wang et al., 2020) 554 63.6
CDAGsu etal., 2021 58.4 66.4
CONTA Zhang et al., 2020b) 56.2 67.9
AdvCAM(Lee etal., 2021b) 55.6 69.9
ECS-Netsunetal. 2021) 56.6 67.8
OC-CSE®weon etal., 2021) 56.0 66.9
CPN (Zhang et al.. 2021a) 57.4 67.8
RIBee etal., 2021a) 56.5 70.6
AMR @Qin et al., 2022) 56.8 69.7
VWERuetal, 2022) 57.3 71.4
CLIMS (xie et al., 2022) 56.6 70.5
SIPE chen etal., 2022a) 58.6 -
AdvCAM + W-O0D (Lee et al., 2022a) 59.1 72.1
AMN(Lee etal., 2022b) 62.1 72.2
ViT-PCMRossetti et al., 2022) 63.6 67.1
AEFT (oo etal., 2022 56.0 71.0
ACR (Kweon et al., 2023) 65.5 70.9
Baseline and our WeakCLIP.

MCTformerxuetal. 2022) 61.7 69.1
WeakCLIP 61.7 77.2+8.1

To further validate the quality of the pseudo masks gen-
erated by WeakCLIP, we fully train a segmentation network,

Table 2 Evaluation of the final segmentation results in terms of mloU
(%) on the PASCAL VOC 2012 val and test sets. The Sup. column
denotes the type of supervision used for training including full super-
vision (F), image-level labels (Z), saliency maps (S), and bounding
box labels (B). The f indicates the use of the improved ViT pre-trained
model. We mark the best WSSS results in bold.

Method Backbone  Sup. wal test

Fully-supervised semantic segmentation (FSSS) methods.
DeepLabV2(chenctal. 2017 ResNet101 1.7 79.7

WR38wuetal, 2019) ResNet38 7 80.8 82.5

WSSS methods with bounding box.
BCMsong et al., 2019) ResNet101 T+ 8B 70.2 -
BBAMLee et al.. 2021¢) ResNet101 73.7 73.7

WSSS methods with saliency map.

ICDFan et al., 2020) ResNet101 67.8 68.0
EPS(Leeeetal, 20214) ResNetl0Ol Z+ S 71.0 71.8
L2Ggiang et al., 2022) ResNet101 72.1 71.7

WSSS methods with only image-level labels.

BES chen etal., 2020) ResNet101 65.7 66.6
SC-CAM Chang et al., 2020) ResNet101 66.1 65.9
SEAM Wang et al., 2020) ResNet38 64.5 65.7
CDAsuetal, 2021) ResNet38 66.1 66.8
CONTA Zhang et al., 2020b) ResNet38 66.1 66.7
AdVCAMLee et al., 2021b) ResNet101 68.1 68.0
ECS-Netsunetal. 2021) ResNet38 66.6 67.6
PMM(i et al., 2021b) Res2Net101 70.0 70.5
OC-CSE Kweon etal., 2021) ResNet38 68.4 68.2
ReCAM Chen et al., 2022b) ResNet101 68.5 68.4
CPN zhang et al., 2021a) ResNet38 T 67.8 68.5
RIB Lee etal., 2021a) ResNet101 68.3 68.6
AMR (Qin et al., 2022) ResNet101 68.8 69.1
VWERu et al., 2022) ResNet101 70.6 70.7
URN(Lietal., 2021a) Res2Net101 71.2 71.5
CLIMS (xie et al., 2022) ResNet101 70.4 70.0
SANCE@ietal, 2022) ResNet101 70.9 72.2
SIPE Chen et al., 20220) ResNet101 68.8 69.7
W-00Dee et al., 2022a) ResNet101 70.7 70.1
AMN(Lee et al., 20225 ResNet101 69.5 69.6
VIiT-PCM (Rossetti et al., 2022) ResNet101 70.3 70.9
AEFT (voon et al., 2022) ResNet38 70.9 71.7
ToCouetal., 2023) ViT-B 69.8 70.5
OCR (Cheng et al., 2023) ResNet38 72.7 72.0
ACR (Kweon etal., 2023) ResNet38 724 72.4

Baseline and our WeakCLIP.
MCTformerxu etal., 2022) ResNet38 T 71.9 71.6
WeakCLIP ResNet38 74.0+2.1 73.8+22

i.e., DeepLabV1 (Chen et al., 2014), on the PASCAL VOC
2012 dataset using the refined pseudo masks. As shown in
Table 2, WeakCLIP achieves 74.0% and 73.8% mloU on the
PASCAL VOC 2012 val and test sets, respectively. Specif-
ically, compared to our baseline method, MCTformer (Xu
et al., 2022), WeakCLIP outperforms it by 2.1% and 2.2%
mloU on the val and test sets, respectively. Moreover, com-
pared to the other methods with only image-level supervi-
sion, WeakCLIP exhibits superior performance. It attains a
1.3% higher mloU than OCR (Cheng et al., 2023) on the
val set and a 1.4% higher mloU than ACR (Kweon et al.,
2023) on the test set. In addition, compared to methods
with additional saliency map supervision or box supervi-
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sion, e.g., L2G (Jiang et al., 2022) and BBAM (Lee et al.,
2021c¢), our method also achieves superior performance. The
results demonstrate that WeakCLIP can effectively improve
the quality of pseudo masks and achieve state-of-the-art re-
sults on the PASCAL VOC 2012 dataset.

Table 3 Evaluation of the final segmentation results in terms of mloU
(%) on the COCO 2014 wal set. We mark the best WSSS results in
bold.

Method Backbone Sup. val

WSSS methods with saliency map.
EPSaee ctar, 20210) ResNet101 748 35.7
AuxSegNetxuetal, 2021b) ResNet38 33.9

WSSS methods with only image-level labels.

SEAM (Wang et al., 2020) ResNet38 31.9
CDAGsuetal., 2021) ResNet38 33.2
CONTA (Zhang et al., 2020b) ResNet38 32.8
PMM(i et al., 2021b) ScaleNet101 40.2
OC-CSE weon et al., 2021) ResNet38 36.4
RIBwee etal. 2021a) ResNet101 43.8
VWERu etal., 2022) ResNet101 T 36.2
URN(ietal., 2021a) Res2Net101 41.5
SANCE(wietal., 2022) ResNet101 44.7
SIPE(Chen et al.. 20220) ResNet38 43.6
AMN(Lee et al., 2022b) ResNet101 44.7
ViT-PCM Rossetti et al., 2022) ResNet101 45.0
AEFT(Yoon etal., 2022) ResNet38 44 .8
ToCoruetal., 2023) ViT-B 41.3
OCR (Cheng et al., 2023) ResNet38 42.5
ACR (Kweon et al., 2023) ResNet38 45.3

Baseline and our WeakCLIP.
MCTformerxuetal., 2022) ResNet38 T 42.0
WeakCLIP ResNet38 46.1+4.1

4.3.2 COCO 2014

As shown in Table 3, WeakCLIP achieves 46.1% mloU
on the most challenging benchmark, COCO 2014 wval
set. Specifically, compared to our baseline method, MCT-
former (Xu et al., 2022), WeakCLIP outperforms it by 4.1%
mloU on the val set. Moreover, compared to the other meth-
ods with only image-level supervision, WeakCLIP exhibits
superior performance. It attains a 0.8% higher mloU than
ACR (Kweon et al., 2023) on the val set. The results also
show that WeakCLIP achieves state-of-the-art results on the
COCO 2014 dataset.

4.4 Ablation Studies

4.4.1 Baselines for Ablation Studies

As shown in Fig. 4, we present three baselines as basis. The
first baseline is MCTformer, which achieves an mloU of

60.0% on the PASCAL VOC 2012 wal set. For the base-
line of fully fine-tuning CLIP, we train a model with un-

fixed CLIP encoders and a segmentation head. This base-
line achieves a mIoU of only 58.1% on the validation set,
indicating that fine-tuning CLIP with coarse CAM disrupts
its powerful representation. In another baseline, we fix the
weights of CLIP encoders and directly utilize the text-to-
pixel matching results as the pixel-level semantics. How-
ever, this approach yields a poor result, with an mloU of
12.3% on the validation set, as the pre-training objective of
CLIP lacks the modeling of text-to-pixel matching.

4.4.2 Improvements of WeakCLIP Components

To analyze the improvements brought by our proposed
WeakCLIP components, we present the quantitative results
of these components on the VOC 2012 val set in Table 4.

Table 4 Ablation study for WeakCLIP components on PASCAL VOC
2012 wval set. We mark the best WSSS results in bold.

CLIP  Co-Attn. Learnable Pyramid Text-Guided

mloU

Encoders Matching Embed. Adapter = Decoder
(Baseline: CAM from MCTformer.) 60.0
Direct apply CLIP to WSSS.

Unfixed 58.1
Fixed 12.3
Our WeakCLIP.

Fixed v 67.4
Fixed v v 68.9
Fixed v v v 70.3
Fixed v v v v 72.6

First, the co-attention matching module models the rela-
tionships between text and pixels and improves the results to
67.4% mloU on the val set. Next, by employing the learn-
able prompt to capture WSSS-specific text descriptions, the
text-to-pixel representations are significantly improved, re-
sulting in an mIoU of 68.9% on the val set. Then, by incor-
porating the pyramid adapter to learn WSSS-specific multi-
level image representations, we observe an increase in per-
formance to 70.3% mloU on the val set. Finally, the text-
guided decoder, which integrates detailed information and
text-to-pixel guidance in a hierarchical manner, enhances the
performance to 72.6% mloU on the val set.

Table 5 Ablation study for the number of learnable embedding on
PASCAL VOC 2012 val set. We mark the best WSSS results in bold.

Number of . 4 3 16
Learnable Embeddings
mloU 722 723 72,6 723
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Table 6 Comparison of per-class segmentation results in terms of IoUs on the PASCAL VOC 2012 val set.

Method | bkg plane  bike

boat bottle bus car cat chair cow

919 783 39.5
92.7 871 40.6

MCTformer ¢y pgasXuetal., 2022)
WeakCLIP (Ours)

89.9
89.9

55.9 76.7 81.8 79.0 90.7 326 87.1
63.0 78.3 8.8 779 90.7 33.0 84.8

Method horse

table  dog

mbk  person

plant  sheep sofa train tv mloU

572 870 84.6
484 882 838

MCTformer ¢y pgos(Xu et al., 2022)
WeakCLIP (Ours)

77.4
78.4

79.2 55.1 89.2 472 704 588 71.9
81.4 64.9 878 536 764 66.6 74.0

Table 7 Comparison of per-class segmentation results in terms of IoUs on the PASCAL VOC 2012 test set.

Method ‘ bkg plane  bike

boat bottle bus car cat chair cow

923 844 37.2
929 884 40.6

MCTformer ¢y proo(Xu et al., 2022)
WeakCLIP (Ours)

88.3

60.0 72.8 780 79.0 894 317 84.5
57.6 71.8 826 80.0 899 331 82.6

Method table  dog  horse

mbk  person

plant  sheep sofa train tv mloU

59.1 853 83.8
57.6  86.0 82.9

MCTformer ¢y pros(Xu et al., 2022)
WeakCLIP (Ours)

79.2
83.9

81.0 539 853 605 657 577 71.6
79.6 66.6 868 609 728 64.2 73.8

4.4.3 Number of Learnable Embeddings

To examine the impact of the number of learnable embed-
dings, we perform ablation studies and present the results
in Table 5. From the table, it is evident that the best per-
formance is achieved when the number of learnable em-
beddings is set to 8, while slightly inferior results are ob-
tained with other numbers. These findings indicate that the
number of learnable embeddings does indeed influence the
results, and selecting an appropriate number of learnable
embeddings can enhance the text representation in weakly-
supervised semantic segmentation scenarios.

4.5 Visualization
4.5.1 Initial value of learnable temperature

We also conduct ablation studies to explore the impact of
the initial value of the learnable temperature in co-attention
matching. The results are summarized in Table 8. We can
observe that using an initial value of le-1 for the learnable
temperature leads to the best performance.

Table 8 Ablation study for the initial value of learnable temperatures
in co-attention matching on PASCAL VOC 2012 val set.

Initial Value 1 leel  1e2  le3
of Temperatures

mloU 725 726 723 722

4.6 Per-class Semantic Segmentation Results

In Tables 6 and 7, we present the per-class segmentation
results on the val and test sets of PASCAL VOC 2012.
Additionally, Table 9 shows the per-class segmentation re-
sults on the validation set of COCO 2014. We compare
the performance of our proposed WeakCLIP with baseline
method, MCTformer (Xu et al., 2022). The results indi-
cate that WeakCLIP achieves superior performance in most
categories, demonstrating its effectiveness in the weakly-
supervised semantic segmentation (WSSS) domain.

To evaluate the quality of the segmentation results ob-
tained by our proposed method, we conduct a qualitative
analysis by comparing the pseudo masks generated by MCT-
former and WeakCLIP. Fig. 6 illustrates the comparison of
pseudo masks generated using the CAM of MCTformer for
both methods. It is evident that WeakCLIP method gener-
ates more accurate and precise semantic information, partic-
ularly for object locations that were missed or inaccurately
identified by MCTformer.

Furthermore, we provide visualizations of the segmen-
tation results obtained after retraining on the PASCAL
VOC 2012 validation set. Fig. 7 showcases the original
images, the segmentation results produced by WeakCLIP,
and the corresponding ground truth (GT). The visualizations
demonstrate that our method achieves accurate segmenta-
tion results for both indoor and outdoor scenes.

5 Conclusion

Dealing with the noisy and sparse class activation map
(CAM) seeds in current Weakly-supervised Semantic Seg-
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Our Mask Ground Truth

Fig. 6 Comparison of the pseudo mask on the PASCAL VOC 2012 train set.



WeakCLIP: Adapting CLIP for Weakly-supervised Semantic Segmentation

Origin Images Our Results Ground Truth Origin Im

372

Fig. 7 Segmentation visualization results on the PASCAL VOC 2012 val set.
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Table 9 Comparison of per-class segmentation results in terms of IoUs on the COCO 2014 val set. We mark the best results in bold.

MCTformer

MCTformer

WeakCLIP WeakCLIP
Class cvpPRr22(Xu et al., Class cvpRr22(Xu et al.,
2022) (Ours) 2022) (Ours)

background 82.4 824 wine glass 27.0 19.3
person 62.6 59.8 cup 29.0 26.9
bicycle 47.4 49.7 fork 234 15.0
car 47.2 47.7 knife 12.0 18.3
motorcycle 63.7 68.7 spoon 6.6 2.6
airplane 64.7 55.8 bowl 224 19.9
bus 64.5 72.0 banana 63.2 71.7
train 64.5 69.1 apple 44.4 55.5
truck 44.8 51.1 sandwich 39.7 43.7
boat 42.3 453 orange 63.0 69.1
traffic light 49.9 54.9 broccoli 51.2 66.7
fire hydrant 73.2 77.8 carrot 40.0 48.9
stop sign 76.6 78.2 hot dog 53.0 53.6
parking meter 64.4 71.2 pizza 62.2 65.1
bench 32.8 43.1 donut 55.7 67.5
bird 62.6 67.1 cake 47.9 58.0
cat 78.2 81.3 chair 22.8 23.3
dog 68.2 72.5 couch 35.0 39.1
horse 65.8 69.4 potted plant 13.5 15.9
sheep 70.1 75.0 bed 48.6 52.1
cow 68.3 75.9 dining table 12.9 32
elephant 81.6 83.7 toilet 63.1 69.1
bear 80.1 82.6 tv 47.9 52.5
zebra 83.0 83.9 laptop 49.5 54.9
giraffe 76.9 80.0 mouse 13.4 15.0
backpack 14.6 20.2 remote 41.9 48.1
umbrella 61.7 67.1 keyboard 49.8 50.5
handbag 4.5 94 cellphone 54.1 59.0
tie 252 32.8 microwave 38.0 47.5
suitcase 46.8 53.0 oven 29.9 37.5
frisbee 43.8 62.9 toaster 0.0 0.0
skis 12.8 13.5 sink 28.0 28.8
snowboard 314 35.7 refrigerator 40.1 52.2
sports ball 9.2 23.7 book 32.2 32.2
kite 26.3 4.1 clock 43.2 36.0
baseball bat 0.9 0.5 vase 22.6 28.1
baseball glove 0.7 34 scissors 32.9 42.0
skateboard 7.8 11.7 teddy bear 61.9 66.5
surfboard 46.5 49.0 hair drier 0.0 0.0
tennis racket 1.4 3.6 toothbrush 12.2 204
bottle 31.1 25.7 mloU 42.0 46.1

mentation (WSSS) methods is a significant challenge. In this
regard, we propose a novel scheme called WeakCLIP that
leverages the knowledge from pre-trained CLIP models to
enhance the CAM refinement process of WSSS networks.
Our proposed WeakCLIP framework adopts a novel text-
to-pixel matching paradigm and effectively tackles three
key problems associated with integrating CLIP into WSSS.

Experimental results on the widely-used PASCAL VOC
2012 and COCO 2014 datasets demonstrate the significant
improvements achieved by WeakCLIP compared to previ-
ous WSSS methods. The introduction of the WeakCLIP
paradigm, which harnesses large-scale vision language pre-
training, holds promise for advancing solutions to the WSSS
problem. In our future work, we will explore the more ad-
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vanced large-scale CLIP in boosting the pixel-level under-
standing of WSSS.
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