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Abstract—Object detection is a core problem in computer
vision and pattern recognition. In this paper, we study the
problem of learning an effective object detector using weakly-
annotated images (i.e., only the image level annotation is given)
and a small proportion of fully-annotated images (i.e., bounding
box level annotation is given) with curriculum learning. Our
method is built upon Faster R-CNN. Different from previous
weakly-supervised object detectors which rely on hand-craft
object proposals, the proposed method learns a region proposal
network using weakly- and semi-supervised training data. The
weakly-labeled images are fed into the deep network in the
order of from easy to complex; the process is formulated as
curriculum learning. We name the Faster R-CNN trained using
Weakly- And Semi-Supervised data with Curriculum Learning
as WASSCL R-CNN. WASSCL R-CNN is validated on the
PASCAL VOC 2007 benchmark, and obtains 90% of a fully-
supervised Faster R-CNN’s performance (measured using mAP)
with only 15% of fully-supervised annotations together with
image-level annotations for the rest images. The results show
that the proposed learning framework can significantly reduce
the labeling efforts for obtaining reliable object detectors.

I. INTRODUCTION

Recently, object detection based on deep convolutional neural
networks has obtained great performance gain and has been
successfully applied in many problems. However, current deep
learning based object detectors rely on a large amount of fully-
annotated training images. In this paper, we mainly study how
to learn an accurate object detector using small amount of
human labeling efforts.

The problem of reducing human labeling efforts in learning
object detector is a significant topic. There are many papers
[1], [2], [3], [4], [5], [6] work on the weakly-supervised
object detection problem, in which, only the image-level
annotation is given. The state-of-the-art method [4] uses a
multi-branch deep network to infer the category label of every
hand-crafted object proposal. Since the number of hand-crafted
object proposals is large (typically, 1000-2000 per-image),
the efficiency and performance of weakly-supervised object
detection is limited. In this paper, we use a portion of fully-
annotated training images to remedy this problem. Besides
of only using image-level supervision for object detection,
there are some other solutions toward reducing supervision in
training object detectors. For example, Redmon and Farhadi
[7] proposed to train a 9000 classes object detector with some
object class having full supervision and the other object classes
only containing image-level supervision. However, in [7], it

still requires a large number fully-annotated training images for
many object classes. The weak supervision of human interaction
has also been considered. Papadopoulos et al. [8] proposed to
use human verification in the process of weakly-supervised
object detector learning, which requires manual inspection in
the loop. Further, Papadopoulos et al. [9] also proposed to use
click supervision for training object detectors, which requires
to click all bounding boxes. However, in this paper, the WASS
setting only requires to annotate 15% bounding boxes with
85% image-level labels and obtains better results than [9],
[8], which suggests the proposed method is a more effective
approach for reducing annotation for training object detectors.

The general idea of the proposed WASSCL R-CNN is
illustrated in Fig. 1. The accurate bounding box information
of the fully-annotated images can produce a well performance
region proposal network (RPN) o Faster R-CNN. In weakly-
supervised object detection, there is no bounding box an-
notations, thus the weakly-supervised object detectors have
difficulties on generating object locations. Weakly-supervised
object detectors rely on hand-craft object proposals and only
focus on classifying object proposals. The RPN remedies this
flaw and boosts performance. After RPN is learned, the weakly-
supervised detector learning problem can be improved using
curriculum learning. The concept of curriculum learning is
proposed by Bengio et al. [10], indicating that learning from
easy to hard examples can be beneficial. It has been applied
to various problems in computer vision [11], [12], [13], [14],
where people present different definitions to “easy” examples.
Some require human labelers to evaluate the difficulty level
of images [12] while others measure the easiness based on
labeling time [14]. In our work, we determine the easiness by
training a SVM classifier using part of fully annotated data,
without requiring additional human labeling.

There are lots of images with only image-level labels in
our setting, we use multi-instance learning (MIL) [15] to
dig information in them. While MIL algorithms are easily
to convergence to poor local optima. To avoid the situation
that directly adding all weakly-supervised data may deteriorate
the performance of deep detectors, it is natural to combine
curriculum learning which can be seen as a general strategy
for global optimization of non-convex functions [10] to add
the weakly-supervised data for training from “easy” to “hard”.

In summarize, we propose a novel solution termed WASSCL
R-CNN to the WASS object detection problem. Different from
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Fig. 1. Illustration of the proposed WASSCL R-CNN. At first, a Faster R-CNN is learned using a portion of randomly selected fully-annotated training images.
Then, the weakly-annotated images which have image-level labels are gradually fed into the WASSCL network following the order of from “easy” to “hard”
for both classifying region proposals and improving the region proposal network.

previous weakly-supervised learning methods, it gets rid of
hand-crafted object proposals. Its all components are integrated
in a single deep network, optimized in a end-to-end manner
via stochastic gradient decent (SGD) with curriculum learning.
WASSCL R-CNN is evaluated on a challenging object detection
benchmark (PASCAL VOC 2007). It outperforms the state-
of-the-art by a significant margin with very few amount of
fully-annotated training images. Besides, its performance gets
very closing to the fully-supervised Faster R-CNN and its speed
is as fast as Faster R-CNN.

II. METHOD

Our detector is a derivation of Faster R-CNN [16] and
trained in a stage-wise fashion, denoted as WASS R-CNN,
combined WASS R-CNN with curriculum learning, denoted
as WASSCL R-CNN. In this section, we present the details
about the architecture of WASS R-CNN detector, the training
strategy and curriculum learning.

A. Architecture

A WASS R-CNN detector is a cascade of Faster R-CNN
and K classifiers. There are both fully and weakly annotated
images in training dataset, and their supervision information are
in different structure. For fully using them, we design different
proposal classifier block respectively. The overall architecture
of our method is shown in Fig. 2.

1) Data stream for fully annotated images: This part for
fully annotated images is exactly similar to the original Faster-
RCNN work, the detail is just the same as in [16].

Given an image I with bounding box B ∈ Rm×4 and
category of each box y ∈ R(C+1)×m. Feed it into the
Faster RCNN network, after the feature extractor and proposal
generator (RPN module), we get some region proposals
R = (R1, R2, ..., Rn).

We sample the proposals to keep the ratio of positive samples
to negative samples is approximately 1 : 3 during a mini-
batch, then the proposal feature extractor extracts features for
these carefully chosen proposals. The RCNN module performs
bounding box regression and classification based on these
features, shown by the blue arrow in Fig. 2.

The loss is comprised of two classification losses and two
regression losses.

Lfully = LRPN + LFast R-CNN (1)

LRPN =
1

Ncls

∑
i=1

Lcls(p̃i, pi) +
1

Nreg

∑
i=1

piLreg(B̃i, Bi)

(2)

LFastR−CNN =
1

Ncls

∑
i=1

Lcls(ỹi, yi)+ (3)

1

Nreg

∑
i=1

yiLreg(B̃i, Bi) (4)

Here, the Lcls is the log loss, the Lreg is robust smoothL1

loss. Vector with ∼ means prediction values.

2) Data stream for weakly annotated images: Given an
image I with image-level label y ∈ R(C+1) fed into the
network, lots of proposals with objectness scores will be
generated by RPN module.

While the ratio between object and non-object samples is
seriously imbalanced. Since the objectness score indicates the
probability that there is object contained in this region proposal,
those proposals whose scores are smaller than a threshold (here
we set it 0.03) will be removed. After this filter step, many
negative proposals have been removed. Thus, the searching
space of the objects and the complexity of computation could
be dramatically reduced for the next fully connection layers.

Since we set a loose criterion in the previous filter step, the
top-ranked proposals are still coarse and may contain many
false positive samples. We apply MIL [15] to mine confident
candidates for proposal classifier shown by the red arrow in
Fig. 2. Treat each image as a bag that contain lots of instances.
If the bag is positive, there is at least one positive instance in
the bag. On the contrary the bag is negative, all the instances in
the bag are negative. For each proposal the classifier produce
a C + 1 dimension vector φ that predicts whether it contains
object and which kind of object it contains. Let φn pass through
a Max pooling layer, where n is the number of proposals, we
get a C + 1 dimension vector that can be supervised by the
image-level label y = [y0, y1, y2, ..., yC ]

T ∈ R(C+1)×1 with a
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Fig. 2. The network architecture of WASS Faster R-CNN, which is a cascade of Faster R-CNN and K proposal refinement classifiers. WASS R-CNN is
designed to jointly use fully and weakly labeled images. If the image is fully-annotated, the proposal classifier is shown as the blue arrow, if the image is
weakly-annotated, the proposal classifier is shown as red arrow.

standard multi-class cross entropy loss shown in Eq. (5)

Lmuli label = −
C∑

c=0

{yc log φc + (1− yc) log(1− φc)}. (5)

However, with only the image-level supervision, the top-
ranking proposals may fail to meet the standard object detection
requirement (IoU>0.5 between ground truths and predicted
boxes). They may only capture objects partially, or capture too
much background.

To address this problem, we take the online classifier
refinement strategy proposed by [4]. The motivation is that
the proposal with top score may failed to contain just the
whole object well, the proposals who have high overlaps with
it may do or at least have a greater IOU with the ground truths.
The weakly annotated images is similar to the original work
of [4] with an important difference: the RPN module is jointly
trained with the cascade of classifier. For more details of the
classification subnet, please refer to the original OICR paper
[4]

After this classifiers refinement stage, we use the pseudo
ground truths produced by the last detector the guide the RPN
network to learn to regress proposals, which is the same as in
[7] Since the RPN and the Fast R-CNN detectors share the base
convolutional layers. Without refining RPN, the performance
will degrade heavily.

The loss for weakly annotated data is shown as Eq. (6)

Lweakly = LRPN + Lmuli label +

K∑
k=0

Lk
cls (6)

B. Training strategy

As we mentioned before that for weakly annotated images,
we use RPN to generate proposal and the objectness scores
to filer negative proposals. The premise is that the RPN and

detector are accurate enough to do “self-training”. So first,
we use all the fully annotated images to train a Faster R-
CNN detector. We use it to initialize WASSCL R-CNN. Then
we refine the WASSCL jointly using both strong and weakly
annotated images.

During the refining stage, that the proportion of weakly
annotated images is relatively large must be taken into
consideration. We apply the basic detector on the weakly
labeled data, choose proposals with top scores for classes that
present in the image. Add these extra boxes to pseudo ground
truth produced by the last classifier to guide RPN module
training, which can be regarded as a format of knowledge
transfer between teacher model (basic detector) and student
model (WASS R-CNN).

During observing the detection results that obtained by
applying the basic detector on weakly labeled images, we
found that for some of them the detector can predict as precise
as the ground truth. That means for the detector trained with
these strong annotated data, these images are “easy”. While for
some others, the performance is far from good, these images
are “hard”. It is natural to combine curriculum learning which
is a kind of learning paradigm that is inspired by the learning
process of humans and animals in the “self-training” refinement
stage. The samples are not learned randomly but organized in a
meaningful order which illustrates from easy to gradually more
complex examples. First, we use all the fully labeled images
and “easy” weakly labeled images to fine tune basic detector,
after some iterations; add these a little more complex examples,
training for some iterations; finally use all the training images
for fine tuning, then we get the WASSCL R-CNN detector.

C. Learning the “easy” vs. “hard” classifier for curriculum
learning

So how to evaluate the complexity of image with only
the image-level label? It can not be judged by weakly labels



arbitrarily. If the image-level is a one-hot vector, that is to say
there is only one class presents in this image. If there are many
objects of this class and many occlusions, it is still “hard”. We
think the complexity is related to the strong annotated training
data as well. The image that has the similar object class and
space distribution with training data is “easy”.

Inspired by [17], we use the mAPI (mean average precision
per image) shown as Eq. (7) to evaluate the complexity.

mAPI = − 1

|C|

C∑
c=0

APi (7)

To get the complexity of all the weakly labeled data, we first
split the strong labeled data into two parts, the ratio of them is
about 5:3, use the larger part to train a detector. Then apply the
detector on the smaller part, we can obtain the detection results
{VC , VS , VB}, where VC denotes the category probability over
C classes, VS denotes the confidence scores of proposals, VB
denotes the coordinates. We extract features based on the top N
proposals with highest confidence scores to determine whether
this image is “easy” or “hard” using a binary linear support
vector machine (SVM) classifier. Suppose we have a set of
training examples (xi, yi), 1 ≤ i ≤ n, yi ∈ {−1, 1} (hard,
easy) is the label of image i, a linear classifier sgn(w>x+ b)
is learned by solving the following SVM problem

min
w,b

1

2
w> w + C

n∑
i=1

ξi (8)

s.t. yi(w
>w + b) ≥ 1− ξi, ξi ≥ 0, 0 ≤ i ≤ 1 (9)

In which C is a hyperparameter that balances between large
margin and small empirical error, and ξ is the cost associated
with the i− th image xi [17].

We organize the feature with {VC , VS , VB , Y }, Y denotes
the image-level labels. The reason why we use {VC , VS , VB , Y }
is that the difference between VC and Y can reflect that
whether the detector makes a right classification, the VS reflects
the confidence and VB shows the space relationship of each
proposal.

With the bounding box annotations, we can get the mAPI
of each image in the small part of fully annotated images and
evaluate the complexity of each image with it: the image is
“easy”, if mAPI is greater than 0.9, “hard” with the mAPI
smaller than 0.1, normal otherwise. Next, we use the organized
features and complexity labels to train a SVM classifier, so we
can get the complexity information of the all weakly labeled
data by this classifier.

III. EXPERIMENTS

In this section, we will present the results and detailed
analysis of the proposed WASSCL R-CNN.

A. Datasets and Evaluation Measures

We evaluate our method on PASCAL VOC 2007 dataset [22]
, which is a very challenging and commonly used benchmark
in object detection. The dataset contains 2501 training images,

2510 validation images and 4952 test images in 20 object
class. For each image, bounding box annotations are given in
the task of object detection. In the experiments, for all object
detection method, the train and val sets are used for training
and the test set is used for testing. Thus, it has 5011 images
for training and 4952 images for testing. For evaluation, we
use the standard mean average precision (mAP) metric.

B. Implementation Details

As described in Method Section, the proposed WASSCL R-
CNN contains two stages: The Faster R-CNN detector training
stage, the weakly-supervised training stage with curriculum
learning. Even without combining curriculum learning, the
WASS R-CNN detector can accomplish the weakly- and semi-
supervised object detection task. WASS R-CNN is much
stronger than the state-of-the-art weakly supervised method.
And WASSCL R-CNN is stronger than WASS R-CNN. In the
experiments, we use two different base networks: VGG M and
VGG 16 pretrained on the ImageNet dataset [23].

For training Faster R-CNN using fully-supervised training
images, we randomly select 15% of the images in the trainval
set (811 images) and use SGD to optimize the network. The
mini-batch size is set to 1. For the first 30K iterations, the
learning rate is set to 0.001; for the next 20K, it decades
to 0.0001. The momentum and weight decay are set to 0.9
and 0.0005 respectively. And the online refinement classifier
numbers is 3 for all the experiments (i.e., K = 3). We denote
this detector as Faster 15

In the training of WASS R-CNN, we jointly use both fully-
supervised and weakly-supervised data as well as the pseudo
labels produced by Faster 15 to guide RPN at the same time.
For taking full advantage of the fully labeled training images,
if the bounding box annotations of the image are provided, we
replace the pseudo labels (produced by Faster 15) with the well-
annotated labels. The mini-batch size, optimizer, momentum
and weight decay are the same as the previous stage.

For training WASSCL R-CNN, we randomly select 511
images (about 10% percent of the whole training dataset)
from the 811 fully-supervised images to train a Faster R-CNN
detector, denoted as Faster 10, and apply it on the rest 300
images. Using the detection results and their bounding box
annotations, we compute mAPI and train SVM classifier with
extracted features. We find that the feature vector organized in
the format “20+20+(conf+4s)5 (The first 20 denotes the image-
level labels and the latter denotes a 20-dim histogram formed
by predict class labels. 5 denotes we use top 5 proposals) can
get the best performance SVM classifier, shown as Table II.

Since the training data for Faster 15 detector is the whole
fully labeled data while we split it for training SVM classifier,
which may change the distribution of classes, and produce some
false hard examples. To reduce the impact of this situation,
we make a 10-fold multi cross validation and take the voting
results of the 10 SVM classifiers.

With the information of complexity, we first feed the fully-
supervised and easy data into network, after 17k iterations,
add the images with normal complexity, then training for 25k



TABLE I
AVERAGE PRECISION (IN %) FOR DIFFERENT METHODS ON VOC 2007 TEST SET. THE FIRST PART SHOWS THE RESULTS OF TWO EFFECTIVE

WEAKLY-SUPERVISED OBJECT DETECTORS (WSSDN AND OICR). THE SECOND PART SHOWS THE RESULTS OF THE FULLY-SUPERVISED FAST R-CNN
DETECTOR. THE THIRD PART SHOWS THE RESULTS OF WASS AND WASSCL.

Method aero bike bird boat bott bus car cat chair cow table dog horse mbike perso plant sheep sofa train tv mAP

WSDDN VGG M [3] 43.6 50.4 32.2 26.0 9.8 58.5 50.4 30.9 7.9 36.1 18.2 31.7 41.4 52.6 8.8 14.0 37.8 46.9 53.4 47.9 34.9
WSDDN VGG 16 [3] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
OICR VGG M [4] 53.1 57.1 32.4 12.3 15.8 58.2 56.7 39.6 0.9 44.8 39.9 31.0 54.0 62.4 4.5 20.6 39.2 38.1 48.9 48.6 37.9
OICR VGG 16 [4] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
WCCN VGG 16 [18] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
Jie VGG 16 [19] 54.2 52.0 35.2 25.9 15.0 59.6 67.9 58.7 10.1 67.4 27.3 37.8 54.8 67.3 5.1 19.7 52.6 43.5 56.9 62.5 43.7

DPM [20] 32.8 56.8 2.5 16.8 28.5 39.7 51.6 21.3 17.9 18.5 25.9 8.8 49.2 41.2 36.8 14.6 16.2 24.4 39.2 39.1 30.2
Fast R-CNN VGG M [21] 70.9 70.9 62.5 46.7 28.0 70.9 72.7 77.4 33.7 66.6 61.6 70.3 74.8 69.8 62.2 30.1 59.6 62.1 70.0 65.4 61.3
Faster R-CNN VGG M a 66.8 70.3 58.4 44.9 34.5 67.9 75.9 68.7 41.3 62.9 57.1 64.4 77.1 71.0 67.0 33.4 58.5 57.0 68.1 62.8 60.4
Fast R-CNN VGG 16 [21] 77.6 78.6 71.0 61.3 39.6 78.6 78.2 83.5 43.7 74.4 67.7 82.0 81.4 75.5 67.8 32.2 68.0 69.1 78.6 70.2 69.0
Faster R-CNN VGG 16 [16] 70.0 80.6 70.1 57.3 49.9 78.2 80.4 82.0 52.2 75.3 67.2 80.3 79.8 75.0 76.3 39.1 68.3 67.3 81.1 67.6 69.9

Faster R-CNN (15%) VGG M 51.1 56.2 39.2 28.6 20.4 51.8 64.2 56.5 21.6 47.6 40.7 50.5 67.2 60.3 60 20.2 41.6 36.6 56.9 49.2 45.8
Faster R-CNN (15%) VGG 16 51.9 67.9 49.8 33.5 31.4 61.9 69.6 68.7 28.8 62.3 46.4 64.5 73.8 63 66.6 22.4 52.2 50 62.5 56.6 54.2
WASS R-CNN VGG M 55 64.2 44.7 27.9 23.8 58.2 65.4 63.3 23.4 52.6 49.4 54.8 70.9 65.1 57.4 26.3 49.6 45.7 67.2 58.1 51.2
WASS R-CNN VGG 16 61 73.7 57.1 42 37 72.5 70.5 75.6 36.4 67 60 73 77.5 68.1 66.3 32.3 57.2 59.8 71.8 65.5 61.2
WASSCL R-CNN VGG M 57.2 62.6 45 32.8 25.6 61.1 68.5 64.7 29.5 56.3 53.3 59.3 74.2 65.3 58.9 26.7 47.9 47.5 63.4 58.8 52.9
WASSCL R-CNN VGG 16 58.2 75.9 56.6 45.2 39.6 73.2 75.8 77.2 38.4 65.7 61 72.3 78.6 67.3 68.1 33 61.5 61.1 72.1 66.7 62.4

a We get the result by run the code provided by https://github.com/rbgirshick/py-faster-rcnn.

iterations, last use all the data, training for 30k iterations. The
source code in the experiments will be released on publication.

C. Results

The main results of WASSCL R-CNN are given in Table I.
Some of the detection results are visualized in Fig 3. In the
table, we compared the proposed WASS R-CNN and WASSCL
R-CNN to some weakly-supervised object detectors, including
WSSDN [3] and OICR [4], and the fully-supervised Faster
R-CNN detector. When using VGG M as the base network, the
mAPs over 20 classes are 37.9%, 51.2% 52.9% and 60.4% for
OICR, WASS R-CNN, WASSCL R-CNN and Faster R-CNN,
respectively. When using VGG 16 as the base network, the
mAPs are 41.2%, 61.2% and 62.4% 69.9% for OICR, WASS
R-CNN, WASSCL R-CNN and Faster R-CNN, respectively.

From the results, we can observe that: 1) By using the 15%
fully-supervised training images, WASS R-CNN has 13.3%
mAP and 20% mAP improvement over OICR using VGG M
and VGG 16 as base network respectively; WASSCL has 15%
mAP and 21.2% mAP improvement over OICR using VGG M
and VGG 16 as base network respectively; 2) WASS R-CNN
has a great improvement in some difficult classes for weakly-
supervised detectors such as dog, cat and person; 3) After
using the semi-supervised training data, the performance of
WASS R-CNN has been significantly improved, combined with
curriculum learning the performance can be improved greater,
the WASSCL reaches 90% of fully supervised Faster R-CNN’s
mAP when using VGG 16 as the base network and 88% of the

TABLE II
THE ACCURACY OF SVM CLASSIFIER(TAKE THE AVERAGE OF 10

CLASSIFIER).

Model easy sample normal sample hard sample

VGG M 0.73 0.80 0.85
VGG 16 0.72 0.79 082

fully supervised Faster R-CNN’s mAP when using VGG M as
the base network; The results are very impressive, since they
are getting more and more closing the fully-supervised Faster
R-CNN detectors.

Since the 15% fully-supervised training images are randomly
selected from the trainval set, it is necessary to check of the
influence of the random selection. The mean standard deviations
over the 20 classes are very small, close to 0.2% or 0.3%, which
shows WASS R-CNNs are robust the randomly selection of
the fully-supervised training images.

D. Training and testing speed

Here we give the training and testing speed of the proposed
WASSCL R-CNN shown in Table III. WASSCL R-CNN is built
upon Faster R-CNN, so benefit from the shared convolutional
features, our WASSCL R-CNN is also almost proposal cost
free and the speed during training and testing is faster as well,
thanks to the fewer proposals. But for weakly labeled images,
without bounding box information, WASSCL R-CNN set a
loose criterion to filter proposals. The number of proposals
after ROI pooling is more than it in Faster R-CNN, so there is
more region wise computation in WASSCL. That is the main
reason why the training and testing speed of WASSCL R-CNN
is slower than Faster R-CNN. But they are close, especially in
testing stage.

TABLE III
THE TRAINING AND TESTING RATE OF WASSCL R-CNN ON A TITAN X

GPU WITH VGG 16.

Method training testing

Faster R-CNN 3.5 fps 5.9 fps
WASSCL 2.6 fps 5.7 fps

IV. CONCLUSION

We proposed an end-to-end deep framework for general
object detection with weakly- and semi-supervised setting. It
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Fig. 3. Example detection results on PASCAL VOC 2007 test set of WASSCL R-CNN with VGG M trained on 2007 trainval (52.9% mAP) using 15%
fully-supervised training images. The score threshold 0.3 is used to display these images.

is easy to combine with curriculum learning and has achieved
a very impressive detection accuracy on the challenging
PASCAL VOC 2007 dataset. The results show that the proposed
WASSCL R-CNN bridges the performance gap between weakly
supervised object detectors and fully supervised ones. In future,
we will focus on investing the power of transfer learning
on the problem of training object detection with less human
annotations.
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