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Abstract

In this work, we provide an introduction of PyTorch im-
plementations for the current popular semantic segmenta-
tion networks, i.e. DeeplabV3 [2] and PSPNet [9], which
have achieved the competitive performance on various
benchmarks. Our implementations provide a more sim-
ple, efficient and effective way to reproduce the reported
results. By adopting Resnet101 as the backbone, our im-
plementations of DeeplabV3 and PSPNet achieve 78.9%
and 78.3% mIoU scores on the Cityscapes [3] under the
single-scale testing scheme. The code is easily to be read-
able and modifiable. We hope our implementations can
serve the researchers to make further improvements on the
challenging semantic segmentation tasks. Source code is
available at https://github.com/speedinghzl/
pytorch-segmentation-toolbox.

1. Introduction

Image semantic segmentation has always been one of
fundamental research topics in computer vision. With the
development of deep learning techniques, many approaches
have been proposed to constantly boost the semantic seg-
mentation results to new records. Most recently, two pow-
erful methods, i.e. DeeplabV3 [2] and PSPNet [9], have
achieved competitive segmentation results on many popu-
lar benchmarks, such as Cityscapes [3] and ADE20K [10].
However, the original implementations of these two works
are based on Caffe [6], which is currently a bit difficult to in-
stall and get started compared with its following deep learn-
ing tools such as PyTorch and Tensorflow. More impor-
tantly, some results are hard to be reproduced unless taking
the exact training settings, which are usually unaffordable
for many researchers, e.g. the original PSPNet was trained
on 16 P40 GPUs

To tackle the above mentioned issues as well as make
the latest semantic segmentation techniques benefit more
poverty researchers, we re-implement both DeeplabV3 and
PSPNet using PyTorch, which is an open source machine
learning library for Python and is becoming one of the most
popular deep learning tools in the computer vision commu-

Table 1. Comparisons on w/ and w/o syn BN.

Method w/o syn BN w/ syn BN

PSPNet(ours) 76.10 78.30

nity. Our implementations are with the following advan-
tages:

• Integrating synchronous Batch Normalization (BN).

• Taking less time to train a converged model.

• Achieving better performance compared with the re-
ported ones.

All these advantages enable our implementations to re-
produce the semantic segmentation performance on many
benchmarks with a much simpler and efficient way. More
details are given in the following.

2. Highlights of Our Implementations
In this section, we provide the detailed advantages of our

PyTorch implementations accompanied with several exper-
imental results on Cityscapes using Resnet101 [4] as the
backbone.

2.1. Synchronous BN

Synchronous BN [5] has been validated to be an effective
trick, which can make a further improvement for various vi-
sion tasks. Rota et al. [1] proposed inplace-abn, which has
implemented synchronous BN. We incorporate such an out-
standing technique into our implementations. Specifically,
synchronous BN can be easily utilized according to the fol-
lowing code:
import f u n c t o o l s
from modules import InPlaceABN , InPlaceABNSync
BatchNorm2d = f u n c t o o l s . p a r t i a l (

InPlaceABNSync ,
a c t i v a t i o n = ’ none ’ )

bn = BatchNorm2d ( 2 5 6 ) # t h e c h a n n e l o f f e a t u r e s

As shown in Table 1, synchronous BN can provide 2.2%
gain based on the PSPNet.
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Table 2. Comparisons on training time.

Method epoch input size batch size total time

PSPNet (Original) 400 713 16 (16 P40) ∼ 22h
PSPNet (Ours) 108 768 8 (4 Titan V) ∼ 17h

Table 3. Comparison with the original results.

Method PSPNet DeeplabV3

Original 77.59 77.82
Ours 78.30 78.90

2.2. Fewness of Training Time

Our implementations can save a lot of time and compu-
tational resources to train a reliable semantic segmentation
model. Comparisons upon the PSPNet are shown in Ta-
ble 2. In general, our implementation cost less training time
(17h vs. 22h) and GPUs (4 Titan V vs. 16 P40) compared
with the original one. Thus, our implementations will sig-
nificantly benefits the researchers who are not affordable to
buy so many expensive GPUs.

2.3. Better Reproduced Performance

Beyond above mentioned excellent characteristics, our
implementations can also achieve better reproduced per-
formance. As shown in Table 3, our implementations
outperform original ones by 1.71% (PSPNet) and 1.08%
(DeeplabV3) on Cityscapes, respectively. We would like
to provide comparisons on more popular benchmarks in the
following updated version.

3. Benefits
Some recent projects have already benefited from our

implementations. For example, Object Context Network
(OCNet) [8] currently achieves the state-of-the-art results
on Cityscapes and ADE20K. In addition, our code also
make great contributions to Context Embedding with Edge
Perceiving (CE2P) [7], which won the 1st places in all hu-
man parsing tracks in the 2nd LIP Challenge.
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