
Structured Random Forest for Label Distribution
Learning

Mengting Chen, Xinggang Wang, Bin Feng,, Wenyu Liu∗

School of Electronic Information and Communications, Huazhong University of Science and
Technology, Wuhan 430074, China

Abstract

Label distribution learning (LDL) has proven effective in many machine learning

applications. Previous LDL methods have focused on learning a non-linear

conditional probability mass function by maximizing entropy or minimizing the

Kullback-Leibler (K-L) divergence. In order to make full use of the connection

among different classes, a method called structured random forest (StructRF)

regression is used which has been applied to semantic image labeling and edge

detection. It is a general LDL model that treats the distribution as an integral

whole. In StructRF, all label distributions are mapped to a discrete space at

each split node in a random forest. In this way, standard information gain

measures can be evaluated. Then the predicted distribution can be obtained

directly without calculating the probability of every class individually during

the test. StructRF is proved to be faster for training. Excellent performance

is obtained with higher efficiency and lower standard deviation. Besides, we

propose an adaptive variable step method that can speed up the training process

by removing the most calculations of the information gain. It is suitable for the

most decision tree based models.
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Figure 1: Three different ways to label an instance. (a) An instance from a facial

expression database BU 3DFE. (b) Single label. (c) Multi-label. (d) Label distribution.

1. Introduction

Learning with ambiguity is a popular and significant topic in machine learn-

ing and data mining. When we focus on the mapping from the instances to the

labels, labeling one instance with a label distribution can be more efficient and

accurate in a lot of application scenarios such as facial expression estimation,5

age estimation, and crowd opinion prediction. As shown in Fig. 1, label distribu-

tion learning (LDL) is a more general label strategy that can directly deal with

the problem “how much does each emotion describe the facial expression comes

from BU 3DFE [1]” while single-label learning (SLL) and multi-label learning

(MLL) [2] aim only to answer the question that “which emotion can describe10

the facial expression” [3].
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The proposal of LDL was first formally introduced by Geng et al. [3], in

which six working LDL algorithms were proposed in three strategies: problem

transformation, algorithm adaptation, and specialized algorithm design. The

two specialized algorithms SA-IIS and SA-BFGS stood out by the significant15

advantage of accuracy and efficiency. This illustrates that LDL requires the

special designs to achieve good performance, which encourages us to follow the

pace of specialized design. Therefore, SA-IIS and SA-BFGS are two major

algorithms that we compared with. Both SA-IIS and SA-BFGS are represented

by a maximum entropy model [4]. SA-IIS uses a strategy similar to Improved20

Iterative Scaling (IIS) [5]. IIS starts with an arbitrary set of parameters. Then

for each step, it updates the current estimate of the parameters. SA-BFGS

follows the idea of an effective quasi-Newton method BFGS, which performs

much more efficiently than the standard line search Newton method. There are

a lot of LDL algorithms which can fit some real applications well. For example,25

in order to settle the problem of lacking sufficient and complete training data,

Geng et al. proposed two algorithms named IIS-LLD and CPNN for facial age

estimation [6]. After that, Geng et al. observed that the facial appearance

changes at different speed over different age period [7], so they further proposed

an adaptive label distribution learning (ALDL) algorithm for better estimation.30

Geng and Hou combined LDL with SVR method and proposed an algorithm

named Label Distribution Support Vector Regression (LDSVR) for pre-release

prediction of movies [8]. Then label distribution was extended to multivariate

label distribution by Geng and Xia [9]. They proposed two algorithms based

on the Jeffery divergence for head pose estimation. LDL can also be adapted35

to crowd counting in public video surveillance [10] for the fact that the crowd

image contains a similar number of people showing similar features. Xing et

al. used a method called Logistic Boosting Regression (LogitBoost) [11], a

combination of the boosting method and the logistic regression [12] to learn a

general LDL model family [13]. Inspired by differentiable decision trees [14],40

Shen et al. proposed an end-to-end strategy label distribution learning forests

(LDLFs) [15].
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In previous studies, the most common learning approach of LDL is learn-

ing it by optimizing an energy function based on the maximum entropy model

[3, 6, 7]. Such an approach is limited for that the exponential part of this model45

restricts the generality. In order to avoid making this assumption, Those papers

[13, 10] extend the existing learning algorithms by boosting and support vector

regression. To break the limitation in representation learning, LDLFs [15] was

proposed to learn deep features in an end-to-end manner. Although consider-

able research has been devoted to optimizing strategy or feature representation,50

rather less attention has been paid to the connection between different classes

which is quite common in real-world applications. For example, in facial expres-

sion recognition, some basic emotions often appear together such as disgust and

fear, and some often conflict with each other such as happiness and sadness.

This phenomenon of combining classes is also common in natural scene recog-55

nition. Sky and cloud often appear together, but rarely do we see both snow

and desert in one image. So structured prediction is more applicable to solving

this problem by considering the output as an integral whole. Therefore, a novel

approach called structured random forest (StructRF) is proposed in this paper.

It combines random forest and structured prediction for LDL. There are many60

structured prediction algorithms, among which the random forest is proved to

be simple and effective. Constructing a decision tree is all about finding the split

decision that returns the highest information gain. The information gain mea-

sures the level of impurity in a group. But the impurity of label distributions

cannot be measured. In order to break down the barriers, training instances65

are clustered into two distinct groups based on label distributions at each split

node of decision trees. Then, the instances are attached to the same cluster

label if they are clustered to the same group. In this way, the information gain

of each candidate threshold can be obtained directly. When a node reaches the

condition of generating a leaf node of the tree, the mean of all instances label70

distributions is the prediction of this leaf node. So when a testing instance

reaches a leaf node, the predicted distribution of one tree is formed directly,

and the diversity of random forest can help to avoid overfitting.
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Another finding of this paper is that the calculating procedure during train-

ing process of the decision tree is redundant. In traditional methods, the in-75

formation gain at each candidate threshold needs to be calculated. But the

information gain has the feature of smoothly varying at adjacent candidate

thresholds. In other words, when the information gain of a threshold is small,

it tends to be still small at nearby thresholds. Therefore, there is no need to

compute the information gain at every candidate threshold. In light of this80

discovery, a fast training method with an adaptive variable step is proposed.

Many techniques have been developed to speed up decision tree learning,

such as designing a fast tree-growing algorithm, parallelization, and data par-

titioning. Among them, a large amount of research work has been done on

reducing the computational cost, such as SLIQ [16], SPRINT [17], or Rainforest85

[18]. Apparently, developing a fast tree-growing algorithm is more essential.

There are basically two approaches to designing a fast tree-growing algorithm:

searching in a restricted model space and using a powerful search heuristic. Dif-

ferent from above works, our method aim to removing redundant computation

by adapting the step.90

The first contribution of this paper is exploring the potential value of the

connection between different classes and making full use of it which results in

a better performance. The structured random forest model is fast for training,

easily parallelized and can store any structured output in leaf nodes. Another

contribution is that an adaptive variable step method is proposed to speed up95

the training rate without any performance loss. This method is not only adapted

to our approach but also suitable for the most decision tree based models.

The rest of the paper is organized as follows. First, a brief review and

discussion of the related work on LDL are given in Section 2. The algorithm

structured random forest for LDL and the adaptive variable step method are100

proposed in Section 3. Then the details of the experiments are reported in

Section 4. Finally, the conclusions are drawn in Section 5.
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2. Related Work

2.1. Formulation of LDL

Suppose that we are given a set of m samples S = {(x1, D1) , ..., (xm, Dm)}105

for training, where x = {x1, x2, ..., xq} is a q-dimentional vector. For each

instance xi, its label distribution is denoted by Di = {dy1xi
, dy2xi

, ..., dycxi
} where

y ∈ Y, Y = {y1, y2, ..., yc} denotes the complete set of labels. The constant

c is the number of possible label values and d
yj
xi is the description degree of

the particular j-th label yj to the particular i-th instance xi. According to110

the definition, each description degree should satisfy the constraints dyx ∈ [0, 1]

and
∑
y d

y
x = 1. For a better understanding, it is necessary to distinguish the

label distributions clearly from the possible label. The description degree is

represented sometimes by the form of conditional probability, i.e., P (y|x). It

is not the probability that the class y can label the instance correctly but the115

degree that the class y describes the instance.

2.2. Structured prediction

2.2.1. Random forest

To avoid the overfitting of decision trees [19], the random forest model is

built. Random Forest is an ensemble learning method for classification, regres-120

sion, and other tasks. The first algorithm for random forests was created by

Tin Kam Ho [20] using the random subspace method [21]. Then the model has

been wildly applied.

During training, randomness is injected into trees in order to give the trained

trees better generalization power. Given a training set, random forest repeat-125

edly selects a random subset of samples and a random subset of the features

with the replacement of the training set and fits trees to these samples. The

standard choice of ensemble model includes majority voting for classification

and averaging for regression.

The random forest model offers many advantages such as extremely fast for130

training and classification, being easily parallelized, tending not to over-fit and

robust to noisy labels. So it has been widely used in many fields [22, 23, 24].
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2.2.2. Structured random forest

Structured forest model has been used in many computer vision applications

such as semantic image labelling [25], object counting [26] and edge detection135

[27].

The structured random forest we applied in this paper is slightly different

from the traditional structured prediction model. On the one hand, only the

output space is deemed to be structured, and the input space is standard, on

the other hand, the scoring function and efficient optimization procedure are140

required on common approaches for structured prediction. The inference used in

the structured random forest, by contrast, is more general and straightforward.
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3. Structured Random Forest for LDL

3.1. Training a single tree

Firstly, the StructRF model is trained on a training dataset S = {X,D} =145

{(x1, D1) , (x2, D2) , ..., (xm, Dm)}.

Cluster

Find Split 

Feature & 

Threshold

Split

Split

Parent Node

Right Child Node

Left Child Node

Leaf Node

Further Split …

Figure 2: The unit of the training process. There are five samples at this parent node,

features are denoted by blue rectangles, and scatter plots represent the label distributions.

All samples at this parent node are clustered into two disjoint groups which are colored in

pink and green respectively. The samples in the same group are assigned to the same cluster

label. Based on cluster labels, the information gain can be attained. Then those samples are

split by the split feature and threshold that can get the maximum information gain. The right

child node is generated as a leaf node as it reaches preset condition, and the left child node

will be further split.

A decision tree consists of a set of split nodes n ∈ N Split and leaf nodes

l ∈ NLeaf . Each split node can be viewed as a parent node. The nodes split

from it are its child nodes. The unit of training process is shown in Fig. 2.

At a given parent node n, {X,D} denotes of all the n training samples of150

it. Those samples will be split into two subsets {X−, D−} and {X+, D+}, in

which “−” and “+” respectively denote the left and right child node of the
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parent node. In order to formulate the split decision, we need to calculate a

single feature whose index is denoted by f and a threshold is denoted by t, in

which f ∈ {1, 2, .., q}. Since there are n samples in the current node, there are155

n numbers in the f -th dimension. Without the loss of generality, we suppose

values of the n numbers are different. Then values are sorted in ascending order,

denoted by
{
a1f , a

2
f , ..., a

n
f

}
. Tf =

{
aif+a

i+1
f

2 |1 ≤ i ≤ n− 1

}
is the candidate set

of the threshold (i.e., t ∈ Tf ). The partition performs in the following way:

 ∀x ∈ X : x ∈ X−f,t ⇔ xf < t

∀x ∈ X : x ∈ X+
f,t ⇔ xf > t

(1)

In the traditional random forest algorithm, f and t depend on the maximum160

information gain that each candidate threshold can achieve. In order to calcu-

late the maximum information gain easily, the samples {X,D} are divided into

two clusters by k-means at each split node. After that all the instances are rela-

belled as {X,C} = {(x1, c1), ..., (xn, cn)}, in which ci ∈ {0, 1}. In our method,

Shannon entropy Ent(X) = −
∑
c∈{0,1} pclog(pc) is used to measure the impu-165

rity, where pc is the fraction of samples in X with label c. The information gain

for the f -th dimension feature split on t is:

Gain(X,X−f,t, X
+
f,t) = Ent(X)−

∑
λ∈{−,+}

∣∣∣Xλ
f,t

∣∣∣
|X|

Ent(Xλ
f,t) (2)

where Xλ
f,t, λ ∈ {−,+} denotes the two parts split from X based on f , t and

Eq. (1). Since the information gain can be calculated, the best choices of f and

t will be obtained as follows:170

f, t = arg max
f∈{1,2,...,q},t∈Tf

Gain(X,X−f,t, X
+
f,t) (3)

The process of training a single tree is shown in Algorithm 1, and the overall

algorithm is presented in Algorithm 2.

3.2. Merge trees to a forest

9
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Algorithm 1: Generate a Single Tree

Input : The training set: (X,D)

Default: The maximum depth of tree: Depmax;

The minimum number of samples allowed to be split: Nummin;

Output: Tree structure

1 Function GenerateTree (X,D)

2 Num = number of samples in the current node;

3 Dep = depth of the current node;

4 if (Num < Nummin)||(Dep > Depmax) then

5 Generate a leaf node Leaf = mean(D);

6 return

7 end

8 Cluster the label set D into 2 clusters by k-means;

9 Relabel xi ∈ X with ci ∈ {0, 1};

10 f, t = BestSplit(X,C) as Eq. (3);

11 Split (X,D) into (X+
f,t, D

+
f,t) and (X−f,t, D

−
f,t) based on Eq. (1);

12 GenerateTree(X+
f,t, D

+
f,t);

13 GenerateTree(X−f,t, D
−
f,t);

14 return

15

16 Function BestSplit (X,C)

17 gmax = 0, fbest = 1, tbest = 0;

18 for all feature dimensions f = 1, 2, ..., q do

19 for all possible split thresholds t ∈ Tf do

20 Split X into X+
f,t, X

−
f,t based on f , t and Eq. (1);

21 g = Gain(X,X+
f,t, X

−
f,t) as Eq. (2);

22 if g > gmax then

23 gmax = g; fbest = f ; tbest = t;

24 end

25 end

26 end

27 return fbest, tbest
10



Algorithm 2: Structured Random Forest Regression

Input : The training set (X,D)

Default: The number of decision trees T

Output: The learned structRF

1 for µ = 1, 2, ..., T do

2 Randomly sample, with replacement, (0.8×m) training examples

from (X,D) to form a new training set (Xµ, Dµ);

3 treeµ = GenerateTree(Xµ, Dµ);

4 end

5 Merge all the trees into a learned structRF;

6 return

Whether random forests can achieve robust results depends on how we com-

bine the output of multiple decorrelated trees. We can consider it as a regression

problem. Then the averaging can be used to get the ensemble output:

H (x, D) =
1

T

T∑
i=1

treei (xi, Di) (4)

where (xi, Di) is the subset of training data for the i-th decision tree.

3.3. Testing175

Given a test image, it fist pass a feature extractor to get a feature x. Then

the feature is fed to each decision tree to get n primary predictions. The final

prediction is gotten by merging all the primary predictions.

3.4. Adaptive variable step method

During the process of selecting the best split feature f and threshold t, all180

the candidates are traversed in the traditional method. To avoid unnecessary

computation, the step is variable in our method instead of always being set to 1.

Since the information gain varies smoothly at adjacent candidate thresholds, the

step should be short when the current information gain is comparatively large

11
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𝑔 = 0; 𝑔𝑚𝑎𝑥 = 0;
𝑔

𝑔𝑚𝑎𝑥
= 1; 𝑠 = 1

𝑔 = 0.025; 𝑔𝑚𝑎𝑥 = 0.025;
𝑔

𝑔𝑚𝑎𝑥
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𝑔 = 0.02; 𝑔𝑚𝑎𝑥 = 0.025;
𝑔

𝑔𝑚𝑎𝑥
= 0.8; 𝑠 = 3

𝑔 = 0.03; 𝑔𝑚𝑎𝑥 = 0.6;
𝑔

𝑔𝑚𝑎𝑥
= 0.05; 𝑠 = 25

……

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 𝑥100𝑥99𝑥98

0 1 1 0 0 1 1 1 1 00

𝑥5

0 1 1 0 0 1 1 1 1 00

0 1 1 0 0 1 1 1 1 00

𝑔 = 0.028; 𝑔𝑚𝑎𝑥 = 0.028;
𝑔

𝑔𝑚𝑎𝑥
= 1; 𝑠 = 1

0 1 1 0 0 1 1 1 1 00

……
0 1 1 0 0 1 1 1 1 00

Figure 3: Adaptive variable step method. There are 100 samples in ascending order on

a particular feature dimension. Step s is initialized to 1 at first and the highest information

gain gmax is set to 0. At first, gmax shows quite near to current information gain g, so the

step s is relatively small. But it may be larger in the middle if relatively high information gain

has been gotten in the previous process and the current gain g decreases to a comparatively

low level.

with the best information gain, and vice versa. Suppose there are N examples,185

g is the current information gain and gmax is the current best information gain.

The next step s is:

s =
αN

1 + eβ(g/gmax−0.5)
(5)

where α and β are two constants control the intensity of the variation. In this

paper, α is set to 0.25, and β is set to 8.

A sample graph is shown in Fig. 3. The adaptive variable step method makes190

the training process slow-moving when there may be the best split threshold, and

takes a big step forward if the current information gain g is in a comparatively

low level. That is the key why the method can speed up training with almost
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no loss of performance.

4. Experiments195

4.1. Datasets

Table 1: Statistics of the 15 datasets used in the experiments.

No. Dataset Examples(n) Features(q) Labels(c)

1 Yeast-alpha 2,465 24 18

2 Yeast-cdc 2,465 24 15

3 Yeast-elu 2,465 24 14

4 Yeast-diau 2,465 24 7

5 Yeast-heat 2,465 24 6

6 Yeast-spo 2,465 24 6

7 Yeast-cold 2,465 24 4

8 Yeast-dtt 2,465 24 4

9 Yeast-spo5 2,465 24 3

10 Yeast-spoem 2,465 24 2

11 Human Gene 30,542 36 68

12 Natural Scene 2,000 294 9

13 s-JAFFE 213 243 6

14 s-BU 3DFE 2,500 243 6

15 Movie 7,755 1,869 5

There are 15 real-world datasets employed in the experiments in total. The

statistics are shown in Table 1. The datasets from the first to the tenth are

collected from ten biological experiments on the budding yeast Saccharomyces

cerevisiae[28]. Each dataset includes 2,465 yeast genes, and an associated phy-200

logenetic profile vector of the length 24 is utilized to represent each gene. During

one biological experiment, the gene expression level is usually disparate at each

discrete time point. So the labels correspond to the time point, and the label

distributions are measured by the description degrees of all the labels.

The eleventh dataset Human Gene is much larger than the other datasets205

used in this experiment. This dataset is collected from the biological research on

the relationship between human genes and diseases. Each of the 30,542 human
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genes is represented by the 36 numerical descriptors for a gene sequence pro-

posed in[29] and 68 different diseases are corresponding to each label. The gene

expression level of different diseases provides a measure of the description degree210

of the label for every human gene. Then the description degrees constitute a

label distribution.

The twelfth dataset Natural Scene is collected from 2,000 natural scene im-

ages that are ranked inconsistently by ten human rankers. Each image is repre-

sented by a 294-dimensional feature vector extracted by [30] and is associated215

with a multi-label selected from 9 possible labels, i.e., sun, sky, water, cloud,

mountain, snow, desert, building, and plant. Then rankers are required to rank

the relevant labels in descending order of relevance. As expected, the rank-

ings for the same image from different rankers are highly inconsistent. So, a

nonlinear programming process[31] is applied to get the label distribution.220

The thirteenth and fourteenth datasets JAFFE and BU 3DFE are two

widely used facial expression image datasets. There are 213 gray-scale expres-

sion images in JAFFE dataset while BU 3DFE contains 2,500 facial expression

images. The images in JAFFE are scored by 60 persons on the six primary

emotion labels with a 5-level scale, i.e., fear, disgust, happiness, anger, sadness,225

surprise, and the images in BU 3DFE are scored by 23 persons in the same

way in JAFFE. Both two datasets are represented by a 243-dimensional fea-

ture vector extracted by the method of Local Binary Patterns (LBP)[32]. The

score for each emotion is regarded as the description degree, and the description

degrees (normalized gene expression level) of all the six emotions constitute a230

label distribution for a particular facial expression image.

Finally, the fifteenth dataset Movie includes 7,755 movies. There are 54,243,292

ratings from 478,656 different users on a scale from 1 to 5 integral stars from

Netflix. The percentage of each rating level is regarded as the label distribu-

tion. There are numeric and categorical attributes in the dataset such as genre,235

director, country, year, budget and so on. After transforming the categorical

attributes into binary vectors, the final feature vector of each movie is of 1,869-

dimensional.
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4.2. Experimental Setup

Several parameter configurations are tested and the parameter setting with240

the best average performance is selected by 10-fold cross validation. In detail,

the dataset is split into training, test and validation subsets, yielding an 8:1:1

ratio. Then the model is trained on the train set and tested on the validation

set to select the best parameters. After that, the validation set is merged into

the training set. The model is retrained with the selected parameters setting on245

the updated training set and tested on the test set. This procedure is repeated

in 10 times (each time with different train set) and the average performance is

recorded.

4.3. Measures

Table 2: Evaluation measure for LDL algorithms.

Name Formula

Chebyshev(Cheby)↓ Dis
(
D, D̂

)
= maxj

∣∣∣dj − d̂j

∣∣∣
Clark↓ Dis

(
D, D̂

)
=

√∑c
j=1

(dj−d̂j)2

(dj+d̂j)2

Canberra(Can)↓ Dis
(
D, D̂

)
=
∑c

j=1
|dj−d̂j |2

dj+d̂j

Kullback-Leibler(KL)↓ Dis
(
D, D̂

)
=
∑c

j=1 dj ln
dj

d̂j

Cosine(Cos)↑ Sim
(
D, D̂

)
=

∑c
j=1 dj d̂j√∑c

j=1 dj2
√∑c

j=1 d̂2j

Intersection(Inter)↑ Sim
(
D, D̂

)
=
∑c

j=1 min
(

(dj , d̂j

)

Six measurements are selected following four principles[3], i.e., Chebyshev250

Distance, Clark Distance, Canberra Metric, Kullback-Leibler Divergence, Co-

sine Coefficient and Intersection Similarity as shown in Table 2. These measures

come from a different syntactic family summarized in the paper[33] and are rel-

atively widely used in the related areas. Thus, they are believed to represent a

good chance to reflect different aspects of those algorithms.255

4.4. Results on LDL

First of all, the running time on a modern 14-core Intel Xeon E5-2683 v3

server CPU (35M Cache, 2.00 GHz) of all the algorithms is given in Table 3.
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Table 3: Running time(s). *With the adaptive variable step method. Ta:training time.

Te:test time. (1)Yeast-alpha. (11)Human Gene. (12)Natural Scene. (13)s-JAFFE. (14)s-

BU 3DFE. (15)Movie.

Data
SA-IIS SA-BFGS RF RF* StructRF StructRF*

Ta Te Ta Te Ta Te Ta Te Ta Te Ta Te

(1) 244 0.060 22 0.009 1.6 0.006 1.2 0.006 5.0 0.028 4.5 0.029

(11) 1818 0.011 367 0.014 9.9 0.047 7.6 0.054 340 0.201 304 0.197

(12) 1714 0.001 82 0.001 8.5 0.006 6.6 0.007 10.1 0.291 6.5 0.020

(13) 660 0.001 93 0.002 0.7 0.003 0.5 0.003 1.3 0.139 0.7 0.006

(14) 755 0.002 120 0.005 6.5 0.007 5.1 0.008 10.2 0.029 9.2 0.029

(15) 5422 0.003 455 0.008 121 0.024 91 0.025 145.6 0.113 129.3 0.112

There are six representative datasets. Six algorithms for comparisons are im-

plemented in Matlab. The maximum step in SA-BFGS is 300 and in SA-IIS260

is 200. The numbers of trees in the random forest (RF) and StructRF are 50.

In RF, the task is treated as a single label problem in training. In testing, the

class with the maximum is taken as the label, and the probability distributions

of each class in the leaf nodes are assumed as the predictions of the label dis-

tribution. Since SA-BFGS and SA-IIS share the same parametric model, the265

test time is analogous. And we can see that the training speed of SA-BFGS is

much faster than SA-IIS, which is consistent with the remarks in the paper [34].

RF and StructRF are quicker than the other two algorithms that need to give

credit to the parallelism property. Compared with StructRF, RF is much faster.

This occurs because there is no cluster computation in RF. This also explains270

why it is time-consuming of StructRF on Human Gene. It takes quite a while

to update cluster centers when handing large volumetric datasets. And with

the adaptive variable step method, both RF* and StructRF* have a noticeable

improvement in training speed. Since we must wait until the predictions of all

the 50 trees are calculated to get the final output, which is a limitation of the275

ensemble method, so the test time of StructRF is relatively long. Nonetheless,

each tree’s predictions are independent of each other and the testing time for a

single tree is similar than the other two algorithms. So if the condition for par-

allel computing is available, test time can be further reduced. Besides, the code

16



is unoptimized Matlab code. The speed can also be improved by engineering280

means.

Table 4: Results on Yeast-alpha.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1657±0.0071 0.0148±0.001 0.0135±0.0009 0.0133±0.0008

Clark↓ 1.6332±0.0534 0.2334±0.012 0.2108±0.0133 0.2079±0.0134

Can↓ 5.5901±0.2407 0.7630±0.042 0.6848±0.0455 0.6745±0.0461

KL↓ 0.3635±0.0301 0.0067±0.001 0.0062±0.0007 0.0054±0.0007

Cos↑ 0.7373±0.0157 0.9934±0.001 0.9945±0.0007 0.9947±0.0007

Inter↑ 0.6888±0.0137 0.9577±0.002 0.9620±0.0025 0.9628±0.0025

Table 5: Results on Yeast-cdc.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1287±0.004 0.0178±0.001 0.0163±0.0009 0.0161±0.0010

Clark↓ 1.6482±0.0189 0.2352±0.012 0.2161±0.0138 0.2139±0.0139

Can↓ 5.2399±0.0839 0.7088±0.036 0.6492±0.0416 0.6403±0.0427

KL↓ 0.4108±0.0117 0.0082±0.001 0.0071±0.0009 0.0068±0.0009

Cos↑ 0.7782±0.0077 0.9921±0.001 0.9931±0.0008 0.9934±0.0008

Inter↑ 0.6787±0.0067 0.9531±0.002 0.9572±0.0027 0.9579±0.0028

Table 6: Results on Yeast-elu.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1262±0.0042 0.0178±0.001 0.0164±0.0006 0.0160±0.0006

Clark↓ 1.0117±0.0458 0.2160±0.007 0.1992±0.0058 0.1961±0.0058

Can↓ 3.032±0.1301 0.6392±0.019 0.5838±0.0172 0.5756±0.0171

KL↓ 0.1709±0.0173 0.0073±0.0005 0.0063±0.0004 0.0061±0.0004

Cos↑ 0.8486±0.0084 0.9929±0.0005 0.9939±0.0004 0.9941±0.0004

Inter↑ 0.7804±0.0079 0.9547±0.001 0.9588±0.0012 0.9593±0.0012

The results are presented on Table 4 to Table 18. Because those algo-

rithms are tested via ten-fold cross-validation, the performance is represented by

“mean±standard deviation”. In each table, we highlight the best performance

by boldface. As it can be seen from those tables, the overall performance of285

each algorithm on all the six measures is consistent, i.e., StructRF > SA-BFGS

> SA-IIS > RF. Both SA-IIS and SA-BFGS are represented by a maximum
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Table 7: Results on Yeast-diau.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1981±0.0047 0.0386±0.001 0.0370±0.0015 0.0358±0.0018

Clark↓ 1.3546±0.0134 0.209±0.007 0.2008±0.0082 0.1941±0.0085

Can↓ 2.9506±0.0339 0.449±0.017 0.4309±0.0193 0.4164±0.0201

KL↓ 0.6327±0.0246 0.014±0.001 0.0131±0.0011 0.0124±0.0012

Cos↑ 0.7849±0.0065 0.987±0.001 0.9879±0.0011 0.9884±0.0011

Inter↑ 0.6479±0.0058 0.938±0.002 0.9401±0.0028 0.9421±0.0029

Table 8: Results on Yeast-heat.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1653±0.005 0.0430±0.001 0.0423±0.0009 0.0406±0.0009

Clark↓ 0.7145±0.0155 0.1881±0.003 0.1828±0.0032 0.1764±0.0032

Can↓ 1.4808±0.0344 0.3772±0.005 0.3647±0.0067 0.3526±0.0068

KL↓ 0.2088±0.0114 0.0133±0.0004 0.0127±0.0005 0.0118±0.0005

Cos↑ 0.8743±0.0044 0.987±0.0004 0.9880±0.0005 0.9887±0.0005

Inter↑ 0.7694±0.005 0.938±0.001 0.9401±0.0011 0.9422±0.0011

Table 9: Results on Yeast-spo.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.2649±0.0087 0.0600±0.004 0.0584±0.0039 0.0575±0.0036

Clark↓ 0.8367±0.0332 0.255±0.017 0.2504±0.0175 0.2461±0.0154

Can↓ 1.7739±0.0777 0.523±0.034 0.5134±0.0355 0.5044±0.0298

KL↓ 0.2725±0.0216 0.0254±0.003 0.0246±0.0031 0.0240±0.0027

Cos↑ 0.7919±0.011 0.976±0.003 0.9769±0.0027 0.9774±0.0023

Inter↑ 0.699±0.0115 0.914±0.005 0.9154±0.0056 0.9170±0.0047

Table 10: Results on Yeast-cold.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1948±0.0091 0.0530±0.002 0.0512±0.0018 0.0498±0.0018

Clark↓ 0.4804±0.0171 0.144±0.005 0.1398±0.0059 0.1361±0.0059

Can↓ 0.8348±0.0323 0.249±0.009 0.2406±0.0104 0.2348±0.0107

KL↓ 0.1416±0.0103 0.013±0.001 0.0122±0.0012 0.0118±0.0012

Cos↑ 0.8955±0.0074 0.988±0.001 0.9885±0.001 0.9891±0.0010

Inter↑ 0.7934±0.0087 0.938±0.002 0.9407±0.0024 0.9422±0.0025
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Table 11: Results on Yeast-dtt.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.159±0.0037 0.0388±0.001 0.0361±0.0014 0.0350±0.0014

Clark↓ 0.3959±0.0087 0.105±0.004 0.0984±0.0041 0.0953±0.0038

Can↓ 0.7063±0.0175 0.181±0.005 0.1693±0.0065 0.1636±0.0056

KL↓ 0.0965±0.0038 0.0070±0.001 0.0063±0.0007 0.0059±0.0007

Cos↑ 0.921±0.0031 0.9933±0.0004 0.9940±0.0005 0.9944±0.0005

Inter↑ 0.8248±0.0045 0.9552±0.001 0.9580±0.0015 0.9597±0.0012

Table 12: Results on Yeast-spo5.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.1795±0.0067 0.0928±0.006 0.0914±0.0052 0.0867±0.0048

Clark↓ 0.3747±0.0155 0.187±0.013 0.1842±0.0116 0.1751±0.0103

Can↓ 0.575±0.0232 0.287±0.019 0.283±0.0169 0.269±0.0154

KL↓ 0.1105±0.0079 0.03007±0.003 0.0293±0.0028 0.0268±0.0023

Cos↑ 0.9187±0.005 0.9733±0.003 0.9741±0.0024 0.9763±0.002

Inter↑ 0.8205±0.0067 0.9072±0.006 0.9086±0.0052 0.9133±0.0048

Table 13: Results on Yeast-spoem.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.135±0.0096 0.0891±0.005 0.0868±0.0049 0.0830±0.0042

Clark↓ 0.2068±0.0148 0.1321±0.007 0.1293±0.0073 0.1240±0.006

Can↓ 0.2851±0.0203 0.1840±0.010 0.1798±0.0101 0.1723±0.0084

KL↓ 0.0624±0.0084 0.025±0.003 0.0245±0.0024 0.0223±0.0021

Cos↑ 0.9519±0.0056 0.9780±0.002 0.979±0.002 0.9806±0.0017

Inter↑ 0.8651±0.0096 0.9109±0.005 0.9132±0.0049 0.9170±0.0042

Table 14: Results on Human Gene.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.0798±0.0067 0.0534±0.004 0.0533±0.0038 0.0532±0.0039

Clark↓ 3.8951±0.1679 2.123±0.088 2.1111±0.0864 2.1026±0.0912

Can↓ 27.282±1.1435 14.541±0.653 14.4532±0.6455 14.387±0.6685

KL↓ 0.6146±0.0607 0.238±0.019 0.2365±0.0194 0.2336±0.0196

Cos↑ 0.6488±0.0139 0.833±0.011 0.8343±0.0107 0.8359±0.0116

Inter↑ 0.6052±0.0122 0.783±0.010 0.7842±0.0097 0.7858±0.0103
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Table 15: Results on Natural Scene.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.3477±0.0093 0.3411±0.017 0.322±0.017 0.2651±0.0148

Clark↓ 2.5521±0.0151 2.461±0.025 2.411±0.023 2.408±0.0251

Can↓ 7.1564±0.0628 6.765±0.104 6.620±0.097 6.5025±0.1081

KL↓ 1.5477±0.2001 0.870±0.026 0.854±0.062 0.6142±0.0292

Cos↑ 0.6102±0.011 0.698±0.008 0.710±0.017 0.8026±0.0121

Inter↑ 0.4602±0.0095 0.487±0.012 0.548±0.017 0.6045±0.0131

Table 16: Results on s-JAFFE.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.2019±0.0425 0.1175±0.015 0.1184±0.0145 0.1047±0.0137

Clark↓ 0.8755±0.0783 0.419±0.034 0.4657±0.0633 0.3709±0.0399

Can↓ 1.7105±0.1829 0.875±0.086 0.9565±0.1269 0.7726±0.092

KL↓ 0.2977±0.0658 0.070±0.012 0.0861±0.0231 0.0544±0.0117

Cos↑ 0.8277±0.0488 0.9340±0.012 0.9277±0.0113 0.9483±0.0117

Inter↑ 0.7371±0.0373 0.851±0.016 0.8426±0.0152 0.8690±0.0165

Table 17: Results on s-BU 3DFE.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.219±0.0165 0.1113±0.004 0.1089±0.0051 0.1123±0.0056

Clark↓ 0.8688±0.0337 0.416±0.009 0.3676±0.0121 0.3476±0.0166

Can↓ 1.8266±0.0654 0.934±0.022 0.7631±0.0239 0.7451±0.0337

KL↓ 0.2907±0.0349 0.068±0.004 0.0603±0.0043 0.0581±0.0052

Cos↑ 0.8182±0.0162 0.935±0.004 0.9413±0.0043 0.9425±0.0052

Inter↑ 0.71±0.0123 0.862±0.004 0.8647±0.0046 0.8661±0.0062

Table 18: Results on Movie.

Measures RF SA-IIS SA-BFGS StructRF

Cheby↓ 0.263±0.0112 0.1502±0.008 0.1317±0.0062 0.1108±0.005

Clark↓ 1.0681±0.0524 0.591±0.028 0.5665±0.0246 0.5042±0.0235

Can↓ 2.0538±0.1017 1.137±0.057 1.0948±0.0511 0.9629±0.0452

KL↓ 0.4403±0.0302 0.137±0.013 0.1273±0.0109 0.0921±0.0066

Cos↑ 0.8402±0.0069 0.905±0.008 0.9183±0.0063 0.9393±0.0042

Inter↑ 0.6849±0.0048 0.800±0.010 0.8155±0.0083 0.8421±0.0062
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entropy model, and the optimization process of SA-IIS is similar to Improved

Iterative Scaling (IIS) while SA-BFGS is optimized by effective quasi-Newton

optimization. StructRF performs better than the other two algorithms because290

it makes full use of the inherent structure. The prediction of StrucRF is derived

from the original training data as a whole, rather than a separate calculation of

the conditional probability of each class.

The performance of StructRF on the Chebyshev distance is slightly weak

compared with the other measures. This might result from the fact that the295

Chebyshev distance only cares about the worst match over the whole label

distribution, and the random forest focuses on the overall structure Di instead

of each description degree d
yj
xi .

StructRF shows a significant advantage over Clark Distance and Canberra

Metric. It is caused by the definition of these two measures. As noticed in [35],300

the Clark distance and Canberra metric are sensitive to small changes near zero.

Nevertheless, the prediction of StructRF in each leaf node comes from the mean

value of all the samples’ distribution that stored in this leaf node which results

in fewer near-zero outputs than SA-IIS and SA-BFGS.

The performance is improved with different degrees on StructRF for different305

datasets, among which the most obvious is for JAFFE that can be seen from

Table 16. JAFFE has only 213 samples. It seems to be insufficient compared

with the model size of SA-IIS and SA-BFGS. But forest model doesn’t have

the problem. The depth of each tree is connected with the data scale. The

capability of self-adaptation makes it performs well no matter how large or how310

small the dataset is. And the variety of trees reduces the risk of overfitting.

In addition, the performance of structured random forest is also affected by

the number of decision trees T , sampling ratio and max depth of each tree.

Fig. 4 shows the influence of different experiment parameters to the results.

We can see from Fig. 4(a) that the Chebyshev distance decreases as the max315

depth and sampling ratio increase, but when the max depth increases to 20 and

sampling ratio increases to 0.8, the distance does not decrease significantly. So

in the experiment, max depth is set to 20 and sampling ratio is set to 0.8. From
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Figure 4: The influence of experiment parameters to the results. (a) The Chebyshev

distance on dataset s-BU 3DFE with different maxdepth and different sampling ratio when

there are 20 trees. (b) The Chebyshev distance on dataset s-BU 3DFE with different maxdepth

and different number of trees when the sampling ratio is 0.8.

Fig. 4(b), we can observe that when the depth is large enough, the three curves

have very similar characteristic. The performance of StructRF gets saturated320

when the number of trees reaches 50. When the depth is too small, e.g., 5, the

performance is poor due to under-fitting.

Table 19: Comparison with other LDL methods on dataset Movie.

Method KL↓ Euclidean↓ Sørensen↓

structRF 0.0921±0.0040 0.1726±0.0069 0.1712±0.0068

AOSO-LDLogitBoost 0.0855±0.0037 0.1547±0.0030 0.1521±0.0032

LDLogitBoost 0.0900±0.0038 0.1585±0.0032 0.1552±0.0031

Method SquaredX2 ↓ Fidelity↑ Intersection↑

structRF 0.0548±0.0023 0.9763±0.0019 0.8421±0.0039

AOSO-LDLogitBoost 0.0837±0.0034 0.9778±0.0009 0.8478±0.0031

LDLogitBoost 0.0875±0.0034 0.9767±0.0009 0.8448±0.0031

In Table 19, structRF is compared with the recent LDLogitBoost methods

on Movie dataset. The results show that structRF method closely matches the

performance of LDLogitBoost but has slightly worse accuracy. Both structRF325
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and LDLogitBoost using decision trees are non-linear functions but have differ-

ent learning strategy. LDLogitBoost utilizes end-to-end optimization to obtain

better accuracies. It requires to optimize according to different distance mea-

surements separately, i.e., for the six measurements, LDLogitBoost is trained

for six times. While the proposed structRF is more general and only trained for330

one time. As for why the KL and Euclidean measures give a worse performance,

it is probably due to the distribution of training and testing data in the Movie

dataset, since we do not optimize according to a specific distance measure.

4.5. Results of the adaptive variable step method.
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Figure 5: The process of information gain computation. (a) Adaptive variable step

method. (b) Existing method.

To get more facts about the adaptive variable step method, an additional335

experiment is made. The task is to find out the best split decision that can make

the information gain as higher as possible. The dataset is a subset of Human

Gene. It contains only 10000 samples. The feature dimension of each sample is
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Figure 6: The number of computations for each feature dimension.

36. So there are 36× 10000 = 360000 candidate thresholds at all. Fig. 5 shows

the detailed process. Fig. 5(b) is the the existing method (step s = 1) which340

computes the information gain 360000 times. What we can see in Fig. 5(a)

is that the computation is dense when it close to a peak and sparse when the

current information gain is relatively low. After it passes the global maximum

information gain, the step still keeps long nearby lower peaks. Fig. 6 shows the

numbers of computation for each feature dimension. It shows the advantages345

of the adaptive variable step method quantificationally. The number of compu-

tation times reduced to only 447. Such expenditure reduction scarcely affects

the performance. It can be proved from Table 20. The adaptive variable step

method is ten times faster than the existing method, but the best information

gains they find are very close.350

Table 20: The results of the variable step and the existing methods.

Method Feature dimension Split threshold Information gain Time(ms)

Invariable step 3 0.5034 0.0085 25.36

Existing method 3 0.5038 0.0082 2.34

As shown in Table 21, the difference between StructRF and StructRF with

the adaptive variable step method (StructRF*) is quite modest. It means that

the adaptive variable step method can speed up the training process without
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Table 21: The difference between StructRF and StructRF*. *With the adaptive

variable step method.

Method Cheby↓ Clark↓ Can↓ KL↓ Cos↑ Inter↑

Yeast-alpha 0 0.0001 0.0002 0 0.0001 -0.0002

Human Gene 0.0001 0 0 0.0001 -0.0002 -0.0001

Natural Scene -0.0001 0 -0.0002 0 0.0003 0.0002

s-JAFFE 0 0 0.0001 0 -0.0001 0

s-BU 3DFE 0 0.0001 0 0 0 0

Movie 0 0 0 0 0.0001 0

degrading the performance.

5. Conclusion355

In this paper, the label distribution learning problem is considered as a struc-

tured prediction problem and a novel algorithm StructRF is proposed. StructRF

takes full account of the connection between the different classes and maps the

distributions into a discrete space at every split node which is entirely different

from other LDL methods. Being examined on various LDL benchmarks, Struc-360

tRF has obtained superior accuracy compared with traditional LDL solvers.

The encouraging performance suggests that our solution for LDL is a promising

direction to be explored. And an adaptive variable step method for decision

tree models is proved to be general and efficient to speed up the raining process

without any loss of performance.365
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