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Abstract

Discriminative feature learning is critical for person re-identification. To obtain abun-

dant visual information from the input person image, we first propose a novel network

that extracts multi-scale patch-level deep features. Then, we propose an improved soft-

max loss function for learning more compact and more discriminative feature vectors.

Specifically, we integrate feature pyramid blocks and region-level global average pool-

ing functions into the feature extraction network, introduce the well-established nor-

malization techniques in face recognition algorithms into person re-ID, and penalize

the redundancy in feature vectors by minimizing the l1,2 norm of the weight matrix in

the softmax layer. Experiments on three large-scale datasets under the standard settings

show the effectiveness of the proposed method. Moreover, we report our cross-domain

re-ID results by training re-ID models on source datasets and testing them on other

target datasets.
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1. Introduction

The task of image-based person re-identification (re-ID) refers to retrieve images

of some specific pedestrians from a database of images. Benefiting from the great suc-

cess of deep Convolution Neural Networks (CNN) on various computer vision tasks,
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re-ID methods based on deeply-learned features have outperformed human experts and5

shown impressive performance. Recently, by exploiting part information in images,

several state-of-the-art methods can better discriminate the non-salient or infrequent

detailed information [1]. However, due to the large variations in person images, learn-

ing deep features that can capture very detailed cues in an image is very difficult.

To better capture the detailed information, recently proposed methods can be roughly10

classified into two directions. One direction is to use local body-parts features which

contain fine-grained information [1]. Directly training a network with only local part-

level features can enforce the network to focus on those non-salient but discriminative

components. However, using part-level features is based on the assumption that the

parts should be accurately located. To achieve this goal, existing methods either incor-15

porate pose estimation models [2], or decompose an image into parts and then compute

classification loss separately [3]. All of the above approaches can effectively align

parts, but there is no guarantee that all the alignments are exactly accurate. Thus, if

trained with aligning parts, the model is at the risk of learning or memorizing irrelevant

background noise in an image, which will lead to the deterioration of the generalization20

capability of the model [4].

The other direction combines the features computed at multiple intermediate layers

of a network [5, 6]. The intuition behind is that the feature maps tend to of higher

semantic level from the bottom to the top layers in a network [7]. Thus, the non-salient

details, which are usually ignored by top layers but kept in the low-level features, are25

contained in the final multi-scale features. Although those rare yet crucial patterns are

included in the feature, computing classification loss or metric loss such as triplet loss

does not always result in focusing on those infrequent patterns if other patterns are

discriminative enough. Therefore, simply forcing the feature having different scales is

not sufficient for gaining the power of encoding the non-salient patterns.30

In this paper, we propose to fuse the two above ideas for better mining the local

non-salient details. To reach this goal, we design a multi-scale multi-patch network.

Specifically, we convert the intermediate features in a network to the same size and

then add them up to get a multi-scale feature. Then, a global pooling branch and a part

pooling branch [1] are connected to the multi-scale feature.35
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Apart from a novel network for extracting better features, we incorporate the nor-

malization technique into the training process of our network. The normalization tech-

nique is effective and well-established in face recognition algorithms [8, 9], which is

similar to person re-ID in terms of the image retrieval aspect. More precisely, for the

final softmax layer, we normalize the weights and the embedding feature vectors when40

computing softmax loss. Besides, for gaining a higher discriminative ability to rec-

ognize unseen person images, we further reinforce the irrelevance among the column

vectors of the weight matrix via exclusivity regularization. The reason for regularizing

the irrelevance is that we hope to get a feature vector with fewer redundancy elements

in it. If every element in the feature vector is uncorrelated and hence representative45

for some specific attributes of a person image, the generalization ability of the feature

encoding network is higher. To do so, for the weight matrix W in the softmax layer,

we borrow the idea in improvement work on SVM [10] and penalize the l1,2 of it.

As shown in Fig. 1, after applying the normalization, the angles between the column

vectors are larger and thus less correlated.50
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Figure 1: After applying the normalization, the angles between the column vectors are larger and thus less

correlated. The figure is plotted according to our final models trained on Market-1501 with or without

exclusivity regularization.

To sum up, our main contributions are as follows.

• To better capture the detailed cues in person images, we propose a novel multi-
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scale multi-patch network. The fused high-resolution feature map provides more

details for learning better person representation.

• We propose a novel exclusively regularized softmax loss function for learning a55

more compact feature embedding space, which is used to match testing images

in person re-ID tasks.

• To evaluate the effectiveness of our proposed method, we test it on three large-

scale datasets under the standard settings and obtain very competitive results.

2. Related Works60

2.1. Person Re-ID

With the help of deep learning, the person re-ID task has achieved notable progress.

Recent works on person re-ID can be roughly divided into two types: 1) Some methods

focus on designing a delicate model to make features contain sufficient information.

Their proposed methods are mainly built on attention mechanism [5, 11], part-based65

[12, 3, 1] methods, attribute learning [13], and multi-level feature fusing methods [7,

14, 11]; 2) Other methods focus on designing an effective ranking loss [15, 16, 17, 18]

to make features more discriminative. Both ways are trying to get a powerful feature

extractor finally.

The main idea of designing a delicate model is to combine global features with70

local features extracted by deep models efficiently. IDE [19] is a decent baseline for

many later researches. It learns a global feature from a given input image and ignores

the local patterns. A number of later works use additional blocks to acquire local fea-

tures via attention mechanism, part-based method, multi-level feature fusing method

or the combination of the above methods. [11] utilizes attention mechanism on the In-75

ception [20] model. In [11], hard regional attention, soft spatial attention, and channel

attention are employed in a harmonious way. It combines both attention mechanisms

and multi-scale methods, thus resulting in a notable effect. MLFN [7] focuses more

on middle features which contain more detailed information. Besides, a feature se-

lection step on the intermediate feature of multi-level is proposed in [7]. Similarly,80

4



SafeNet [14] utilizes multi-level features by a novel scale normalization block to bal-

ance features channels from different scales. SafeNet then connects scaled multi-level

features together as the final encoder. JLML [21], PCB [1] and MGN [22] propose to

slice the last feature map output from the backbone network into several parts. For each

part, it is supervised by an independent classification loss. After the training finished,85

they concatenate features extracted by the sliced parts. All the mentioned methods

above achieve considerable improvements by extracting extra information from the ba-

sic model and combining them with the global feature.

Apart from building a delicate deep model that is trained with a classification loss

function, researches invent various objective functions to minimize the distance of90

intra-class samples while maximizing the distance of inter-class samples in feature

embedding space. Treating data by triplets [15] inspires a variant of triplet loss into

person re-ID. It takes a sampling way called online hard examples mining into the

training stage, which makes the model be trained in an end-to-end way. The triplet

loss mainly pays attention to obtain correct orders on the training set. Thus, it still95

suffers from a weaker generalization capability from the training set to the testing set.

Quadruplet [17] takes a further step and samples several quadruplets instead of triplets

in a mini-batch. In [17], they find that quadruplets can help the model generate outputs

with a larger inter-class variation and a smaller intra-class variation when compared

to the triplet loss. However, in Triplet[15] and Quadruplet [17], positive pairs, and100

negative pairs are sampled randomly in a mini-batch.

In this paper, we combine multi-level feature fusing and part-based methods in our

deep model. Meanwhile, we add some modifications to the original classification loss

function to make it have the ability to minimize the distance of intra-class samples

while maximizing the distance of inter-class samples in a manner. Our work confirms105

the effectiveness of multi-scale multi-patch deep feature learning; to further enhance

the deep features, some advanced technologies, such as deep ensemble learning [23],

weakly-supervised learning [24], neural architecture search [25, 26, 27, 28, 29] and

few-shot learning [30], can be adopted.
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2.2. Normalized Softmax110

The normalization technique is widely used in face recognition algorithms. In

[31], they study the effect of normalizing both features and weights of the last fully-

connected layer. In their formulation, a loss can be calculated by cos θ, where θ repre-

sents the angle between the feature vector and the column vectors of the weight matrix

in the FC layer. In the following works [8, 9], they introduce a margin between normal-115

ized features and normalized weights. Specifically, loss can be computed by cos(mθ)

[8], cos(θ +m) [9] and cos(θ −m) [32] respectively. More recently, inspired by the

normalization technique in face recognition, [33] improve the softmax via normaliza-

tion, which is still different from ours due to the exclusivity used in our formulation.

2.3. Exclusivity Regularization120

In [10], they first define the concept of (relaxed) exclusivity to manage the diversity

between base learners in an ensemble framework. Besides, they extend the traditional

primal SVM to a novel ensemble version named Exclusivity Regularized Machine.

Besides, they derive a practical formulation of relaxed exclusivity and show that it can

be converted into optimizing l1,2 norm. For re-ID methods, l1,2 norm is employed by125

[21] to enforce sparsity. They sparsify the global feature representation with a group

LASSO. However, they impose the regularization on the embedding feature space and

their motivation is to get a sparse feature vector. In [34], l1,2 norm is applied to fuse

multi-view predictions for robust and consistent performance. In our work, we impose

the regularization on the weight matrix in the final FC (softmax) layer.130

3. Our Proposed Method

In this section, we first describe our proposed multi-scale multi-patch network,

which is capable of learning part-level features from different scales. Next, we intro-

duce the normalized softmax loss as well as the variants used in our network. Also, we

briefly describe the exclusivity regularization and how it is applied in our work.135

6



Figure 2: Network architecture of our proposed Multi-scale Multi-patch Network. We combine features

from different scales together by first unifying the number of channels with the scale normalization block.

Then we map the features to the same size via bilinear upsampling. After adding the features, we employ

a global average pooling and part pooling to get the embedding vector. Finally, a normalized softmax layer

and the cross-entropy loss are used for training the whole network.

3.1. Multi-scale Multi-patch Network

Our proposed network architecture is shown in Fig. 2. In the network, we use

ResNet-50 [35] as backbone, which is employed by a number of state-of-the-art meth-

ods [22, 1]. Following the notations in ResNet, we extract feature maps with different

scales from the network. Specifically, features from conv2 x (4× downsampling),140

conv3 x (8× downsampling), conv4 x (16× downsampling) and conv5 x (32×

downsampling) are extracted. Since our motivation is to exploit features from different

scale, we need to properly combine all these features together. Inspired by previous

work [14] that efficiently merging features from different scales, we adopt their pro-

posed scale normalization block in our network. However, in [14], their method is to145

concatenate those features, while we experimentally found that adding up those fea-

tures achieves a better result when put multi-scale and multi-patch together. Thus, as

shown in the figure, we remove ReLU layer before the output in the scale normalization

block, due to the upsampling step.

After getting the feature that contains information from different scales, we then150

split the feature into two directions. The first direction is performing global average

pooling directly on the whole feature map, which follows the vanilla re-ID networks
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that do not exploit part features. The second direction is to employ part pooling [1],

which is a simple and strong baseline. All of the feature vectors after pooling are then

connected to the normalized softmax layer.155
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Figure 3: Illustration of the difference among vanilla softmax, normalized softmax with or without exclusiv-

ity regularization. After normalization, the learned features are projected onto the surface of a sphere. With

exclusivity, the directions of projections tend to be less correlated. So the elements are more independent

from each other and hence more representative.

3.2. Normalized Softmax and Exclusivity Regularization

3.2.1. Normalized Softmax

The softmax loss function is widely used in the re-ID task. It is computed by

Lsoftmax = − 1

m

m∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
WT

j xi+bj
. (1)

where xi ∈ Rd denotes the feature vector of the i-th sample with length d and xi

belongs to yi-th class. Wj ∈ Rn denotes the j-th column of weights W ∈ Rd×n in the

classification layer and bi is the bias of it. Besides, m and n represent mini-batch size160

and class number respectively.

Inspired by the success of feature normalization in face recognition algorithms [9,

31, 8], we add normalization on both feature and weights of the classification layer.

Observe that WT
j xi = ‖WT

j ‖‖xi‖ cos θj , where θj is the angle between feature vector
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xi and weight column vector WT
j . After normalization on feature and weights, we

have WT
j xi = cos θj . Then, ‖xi‖ is re-scaled to s. In this paper, we use s = 15. Thus,

now the softmax loss function can be written as:

Lnorm =− 1

m

m∑
i=1

log
es cos θyi+byi

es cos θyi+byi +
∑n
j=1,j 6=yi e

sθ+bj
. (2)

3.2.2. Exclusivity Regularization

Recall that the output logits of softmax are computed by li = WTxi and li ∈ Rn.

For each element j in li, we have lij = WT
j x

i. Then lij can be viewed as the mapped

value of xi on the directionWT
j . Thus, if we want to get a low redundant feature vector,

any two directions, i.e., WT
j1

and WT
j2

, are supposed to be less correlated as shown in

Fig. 3. Since the column vectors WT
j are normalized, the angle between two vectors

can be expressed by 〈WT
j1
,WT

j2
〉. To this end, our target becomes

min
W

∑
j1,j2

〈WT
j1 ,W

T
j2〉. (3)

In [10], they prove that the minimization problem (3) can be achieved by simply

minimizing ‖WT ‖T1,2 − ‖W‖2F . In our case, since we have already normalized each

column vector in WT , ‖W‖2F now becomes a constant and equals n2. Therefore, our

final loss function is

L = Lnorm + λ‖WT ‖T1,2, (4)

where λ is a tunable parameter.

4. Experiments

4.1. Datasets and Settings165

In the experiments, three large scale datasets, i.e., Market-1501 [19], DukeMTMC-

reID [36] and CUHK03 [37] are utilized for evaluating our method and comparing

with the state-of-the-art methods. Specifically, we use the cumulative matching char-

acteristics (CMC) and mean Average Precision (mAP) metrics. The details of the three

datasets are given as follows.170
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Market-1501. [19] It contains 32,668 images of 1,501 identities captured by six cam-

era views. The whole dataset is divided into a training set containing 12,936 images

of 751 identities and a testing set containing 19,732 images of 750 identities. For each

identity in the testing set, we select one image from each camera as a query image,

forming 3,368 queries following the standard setting in [19].175

CUHK03. [37] It contains 14,097 images of 1,467 identities. It provides the person

bounding boxes detected using the deformable part model detector and the manually

labeled person bounding boxes, which are called the detected dataset and the labeled

dataset respectively. We conduct experiments both on the labeled dataset and the de-

tected dataset. The dataset offers a 20-splits dividing, resulting in a training set with180

1,367 identities and a testing set with 100 identities. Similar to [38], we also evaluate a

division way with the training set of 767 identities and the testing set of 700 identities.

DukeMTMC-reID. [36] Similar to Market-1501, DukeMTMC-reID contains 36,411

images of 1,812 identities taken by 8 cameras, where only 1,404 identities appear in

more than 2 cameras. The other 408 identities are regarded as distractors. The training185

set contains 16,522 images of 702 identities while the testing set contains 2,228 query

images of 702 identities and 17,661 gallery images.

4.2. Implementation Details

We implement our method based on PyTorch [39]. For the backbone ResNet-50,

we use the official ImageNet pretrained model. During training, we first resize training190

images to 384×128 for random crops and then the cropped person images are resized to

384×128 again, which is the same as the setting in [1]. Both random horizontal flip and

random erasing [40] are used as data augmentation. Before feeding into our network,

each image is subtracted by the mean value and divided by the standard deviation

according to standard normalization procedure when using the pretrained model on195

ImageNet. We use Adam as our optimizer. The learning rate is set to 1e-3. It decays at

epoch 70 as well as epoch 140 with a decay ratio of 0.1. The total training epoch is set

to 150. The batchsize is set to 120. The PK sampling is used by sampling 15 images
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per identity and 8 identities per batch. In our multi-scale multi-patch network, 6 parts

are used in part-pooling.200

4.3. Comparisons with State-of-The-Art Methods

4.3.1. Competitors

We compared our methods against several existing state-of-the-art deep neural net-

work based methods. At first, there are (a) four multi-scale methods (MLFN [7],

SafeNet [14], HA-CNN [11] and Mancs [5]) and (b) two multi-patch methods (PCB [1]205

and MSCAN [3]). Then, we also compare our method with three recent representative

works IDE [19], TriNet [15], CRAFT [12] and another work JLML [21] that also uses

l1,2 norm as regularization.

4.3.2. Evaluation on CUHK03

Tab. 1 shows the comparisons of our method against some existing methods on210

CUHK03. Note that several methods do not report their results under the setting of

the 767/700 split. Therefore, we ignore these methods and only compare our method

with the other methods with their reported results in their original paper. It is evident

that our method outperforms existing methods in all categories on both labeled and

detected bounding boxes. Our method surpasses recent multi-scale methods including215

HA-CNN, MLFN and Mancs, and a multi-patch method, i.e., PCB. Specifically, on the

labeled set, our method outperforms the state-of-the-art method Mancs by 1.4% and

4.6% in Rank-1 and mAP respectively. Besides, on the detected set, the advantage of

our method is more evident. On the detected set, for Rank-1 and mAP, our method

is 4.6% and 6.7% higher than Mancs (multi-scale method) and 8.8% and 13% higher220

than PCB (multi-patch method) respectively.

4.3.3. Evaluation on Market-1501

We evaluated our proposed method on Market-1501 and the results are shown in

Tab. 2. Tab. 2 shows the clear performance gain of the JLML method overall state-of-

the-arts, but with less significant Rank-1 or mAP gains over other methods compared225

with the gains on the CUHK03 dataset. We think the reason is that Market-1501 is a
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Table 1: Results on CUHK03. We use the 767/700 split setting.

Annotation Labelled Detected

Metrics(%) Rank-1 mAP Rank-1 mAP

IDE(C) [19] 15.6 14.9 15.1 14.2

IDE(C)+XQDA [19] 21.9 20.0 21.1 19.0

IDE(R) [19] 22.2 21.0 21.3 19.7

IDE(R)+XQDA [19] 32.0 29.6 31.1 28.2

TriNet [15]+RE[40] 58.1 53.8 55.5 50.7

HA-CNN [11] 44.4 41.0 41.7 38.6

MLFN [7] 54.7 49.2 52.8 47.8

Mancs [5] 69.0 63.9 65.5 60.5

PCB [1] - - 61.3 54.2

Ours 70.4 68.5 70.1 67.2

simpler dataset and thus the results are kind of saturated. Compared with other meth-

ods, our method is competitive in both single query and multi-query settings. Specifi-

cally, on Market-1501, our method outperforms Mancs and PCB, which are two state-

of-the-art methods dealing with local patterns.230

4.3.4. Evaluation on DukeMTMC-reID

Similar to Market-1501, we compare our method with related methods and the

results are depicted in Tab. 3. Our method performs better than other methods. Note

that on DukeMTMC-reID, the multi-scale method SafeNet performs better than the

multi-patch method PCB, which is different from the results on Market-1501. We235

presume that the difference reflects the intrinsic properties in a dataset. That is, in

some datasets, those rare patterns can be better captured in a multi-scale manner, while

in other datasets using multi-patch methods is more appropriate.

4.4. Hyperparameter Analysis

Since the hyperparameter λ plays a vital role in the whole loss function, we further240

examine the performance variation concerning different λ. As shown in Fig. 4, we
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Table 2: Results on Market-1501.

Metrics(%)
Single Query Multiple Query

Rank-1 mAP Rank-1 mAP

CRAFT [12] 68.7 42.3 77.0 50.3

TriNet [15] 84.9 69.1 90.5 76.4

JLML [21] 85.1 65.5 89.7 74.5

SafeNet [14] 90.2 72.7 93.1 81.6

MLFN [7] 90.0 74.3 92.3 82.4

HA-CNN [11] 91.2 75.7 93.8 82.8

Mancs [5] 93.1 82.3 95.4 87.5

MSCAN [3] 76.2 53.1 84.0 62.9

PCB [1] 92.3 77.4 - -

Ours 93.7 81.2 95.3 86.1

Table 3: Results on DukeMTMC-reID.

Rank-1 mAP

PAN [41] 71.6 51.5

SVDNet [42] 76.7 56.8

Deep-Person [43] 80.9 64.8

SafeNet [14] 82.7 57.0

MLFN [7] 81.0 62.8

HA-CNN [11] 80.5 63.8

PCB [1] 81.8 66.1

Ours 84.4 70.4
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Table 4: Evaluation of our proposed multi-scale multi-patch network. Ours best indicates the best results

(with normalized softmax and exclusivity regularization) that are obtain in the setting of training and testing

on the same dataset.

Testing Dataset

Market-1501 DukeMTMC-reID CUHK03

Training Dataset Rank-1 mAP Rank-1 mAP Rank-1 mAP

Market-1501 92.5 78.4 22.4 12.2 2.4 3.2

DukeMTMC-reID 44.9 20.4 81.2 66.9 4.2 4.6

CUHK03 37.7 17.0 16.5 8.5 56.2 55.1

Ours best 93.7 81.2 84.4 70.4 70.1 67.2

train our network on Market-1501 and then draw the curve of Rank-1 accuracy with

different λ on the three different datasets. We can observe the following truths: (1)

Basically, setting λ to 1e-7 is a good practice; (2) When λ is too large, the accuracy

drop on the original dataset is higher than that on other datasets, which shows that the245

regularization term helps to reduce the generalization error but increases the empirical

error. (3) The effectiveness of adding the regularization term varies among different

datasets. In other words, the best parameters for a dataset needs to be carefully tuned

with the help of a well-annotated validation set, which could be an obstacle in person

re-ID based applications. Besides, When λ is 0, our model can achieve 93.41% and250

80.65% in rank1 and mAP respectively on Market-1501.

4.5. Ablation Study

4.5.1. Multi-scale Multi-patch Network with Softmax

Since there are two components in our method: the multi-scale multi-patch network

and the exclusivity regularized normalized softmax. In this part, we switch the normal-255

ized softmax layer into the standard softmax layer to examine the performance of our

proposed network alone. We train our network on Market-1501 and then report the re-

sults on the test sets of the three datasets. As shown in Tab. 4, our proposed multi-scale

multi-patch network is also very effective with the standard softmax. Specifically, for

Market-1501 we show the single gallery results and for CUHK03 we show the results260
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Figure 4: Rank-1 accuracy on different datasets with different λ values in the loss function Eqn. (4).
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on detected images. Compared with our best results reported in the above section, we

can observe the performance gains of our improved softmax. However, by compar-

ing the results on different test sets, we see that the results of testing on other datasets

are unsatisfying, which limits the potential value of application since person re-ID is

usually applied in cross-domain scenarios. Besides, when we take out the part pooling265

component, our model can achieve 93.2% and 81.1% in rank1 and mAP respectively on

Market-1501. When we take out the multi-scale part, the remaining model can achieve

in 93.2% and 81.3% in rank1 and mAP respectively on Market-1501.

4.5.2. Effectiveness of the Normalized Softmax and the Exclusivity Regularization

Similar to previous experiments, we report the cross-domain testing results on the270

datasets that are different from the training dataset, to better examine the generalization

ability of the learned model. By comparing the results in Tab. 4, it is obvious that the

proposed normalization and exclusivity regularization can reliably help a deep neural

network learn more generalized deep embeddings. For example, the Rank-1 and mAP

on Market-1501 are improved from 92.5%/78.4% to 93.7%(+1.2%)/81.2%(+2.8%) re-275

spectively. On CUHK03, the improvement is more significant, i.e., 13.9%/12.1% gain

in Rank-1 and mAP respectively.

5. Conclusion

In this paper, inspired by the recent progress of focusing on non-salient parts in

images, we propose a network to fuse multi-scale and multi-patch features. Then, we280

introduce the well-established normalization techniques in face recognition algorithms,

for further improving the softmax layer and thus getting a more representative feature

embedding. In addition, we propose to penalize the redundancy in feature vectors via

exclusivity regularization, which is achieved by minimizing the l1,2 norm of the weight

matrix in the softmax layer. Moreover, for better understanding the challenges in re-ID285

applications, we report cross-domain re-ID results.
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