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Abstract

The effectiveness of multi-instance learning (MIL) has been demonstrated by

its wide spectrum of applications in computer vision, biometrics, and natural lan-

guage processing. Recently, solving MIL problems using deep neural networks

has proven to be highly effective. However, in current multi-instance neural net-

works, the feature representation of each bag is learned individually, and the re-

lations between bags are not considered. In this study, we propose a novel neural

network for MIL that emphasizes modeling the affinities between bags. It achieves

a more effective bag representation than previous methods. Specifically, a bag

with multiple instances is modeled by its similarity to other bags, and the similar-

ity calculation is carried out in a novel neural network, termed the bag similarity

network (BSN). Training the BSN involves two representation learning problems:

instance feature learning and bag similarity learning. To avoid the complex in-

terdependence of these problems, we decouple the BSN training process by first

∗Corresponding author
Email addresses: xgwang@hust.edu.cn (Xinggang Wang),

yongluanyan@hust.edu.cn (Yongluan Yan), pengtang@hust.edu.cn (Peng Tang),
liuwy@hust.edu.cn (Wenyu Liu), xj.max.guo@gmail.com (Xiaojie Guo)

Preprint submitted to Information Sciences November 5, 2019



training an instance feature learning network, and then construct a bag similarity

network, each of which is optimized end-to-end by back-propagation. Experi-

ments are conducted to demonstrate clearly the advantage of the proposed method

over other state-of-the-art methods on various MIL datasets.

Keywords: Multi-instance learning, neural networks, similarity learning

1. Introduction

Multimedia data, such as text and images, are ubiquitous and are expected

to benefit society. However, such data are often loosely controlled (e.g., images

are rarely given with precise annotations), and thus they are difficult to employ

directly. Moreover, in practice, it is impossible to label all the data manually.5

Weakly supervised learning (WSL), which requires only little supervision, has

been developed to mitigate the cost of data annotation. As a representative of

WSL, multi-instance learning (MIL) was originally proposed for drug activity

prediction [7], and its applicability has since been broadened to a variety of com-

puter vision and machine learning tasks, such as text classification, medical image10

classification, object detection [5, 30, 27], and semantic segmentation [20, 19, 12],

with promising performance.

In MIL, each sample is in the form of a labeled bag that contains a set of

instances associated with input features. The goal of MIL in a binary task is to

train a classifier so that the labels of testing bags may be predicted based on the15

assumption that a positive bag contains at least one positive instance, whereas a

negative bag contains only negative instances. A variety of algorithms have been

proposed for MIL problems; they can be roughly divided into three groups ac-

cording to the underlying principle: the instance-space paradigm, which aims at
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learning instance models (such as mi-SVM [2], EM-DD [38], and MIBoosting20

[34]), the bag-space paradigm, which treats the bags collectively, and the discrim-

inant learning process is performed in the space of bags (such as MInd [4] and

mi-Graph [39]), and the embedded-space paradigm, which learns bag statistics as

bag representations with or without a vocabulary (such as miFV [31] and MI-Net

[29]). A thorough review of classical MIL methods can be found in [1]. In this25

study, we propose bag embedding learning by the bag-space approach in a neural

network.

Neural networks [21, 40, 37, 36] have been effectively used in MIL problems.

Ramon and De Raedt [21] designed a multi-instance neural network that takes a

bag as input, uses hidden nodes to infer instance probabilities, and calculates bag30

probabilities from the related instance probabilities using a log-sum-exp function

over the instances. The log-sum-exp function is a convex max function that relaxes

the bag-instance constraints in MIL. Zhang et al. [37] improved multi-instance

neural networks by feature selection using diverse density and principal compo-

nent analysis (PCA). Zhang and Zhou [36] demonstrated that ensemble methods35

can be integrated with multi-instance neural networks and improve them. Wang

et al. [29] revisited traditional multi-instance neural networks and introduced new

networks that employ different recently proposed deep learning techniques, such

as deep supervision and residual connections (MI-Nets). In MI-Nets, a bag rep-

resentation is generated by aggregating the related instance representations by40

using a max or average pooling layer in the neural network. As demonstrated by

the multi-instance dissimilarity (MInD) method [4], it is more effective to rep-

resent each bag by a vector containing the bag’s dissimilarities to other bags in

the training set and treat these dissimilarities as a bag representation. Based on
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this representation, various classifiers can be adopted for bag classification and45

impressive performance can be obtained.

However, instance similarity in MInD is measured using certain fixed met-

rics, such as the min–min Hausdorff distance and mean–mean Hausdorff distance,

which may not be optimal. Hence, it is natural to ask whether it is possible to learn

some bag similarity metrics for boosting the performance of MIL. We consider this50

a bag similarity learning problem.

To answer the question, we propose a novel neural network structure, namely

the bag similarity network (BSN), owing to the highly effective representation

learning of these networks. We notice that the input of a BSN is quite different

from that of traditional neural networks. In conventional neural networks, only55

one instance is taken as the input, such as an image or a sentence. By contrast,

the proposed BSN takes a target bag and all the training bags as input. Each bag

contains multiple instances. If there are a target bag and N training bags, each

containing M instances, then there are (N + 1) × M instances as input to the

network. BSN is an (N + 1) ×M -stream neural network that has received little60

attention.

When designing the BSN, we let the instance features be learnable. Then, the

similarity between two instances can be easily obtained through an inner product

operation. As a result, in the network, we have N ×M similarities between the

target bag and the training bags. The N×M similarities are represented by hidden65

nodes in the BSN. Then, we propose a differentiable Hausdorff pooling layer to

obtain a bag similarity representation as in the set-to-set distance in MInD [4].

A comparison between the bag similarity obtained by MInD and the proposed

method is shown in Fig. 1, where it can be seen that the diagonal-blockness of the
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similarity matrix is quite satisfactory and is significantly better than that by MInD.70

That is, the learned similarity representation is more discriminative; furthermore,

it is easy to classify using a linear classifier.

BSNGroundtruth MInD

Figure 1: Comparison between the fixed similarity metric (MInD) [4] and the learned similarity

matrix by BSN. The top row shows the similarity matrices of training bags, and the bottom row

shows the similarity matrices of testing bags. Even though the diagonal-blockness of the similarity

matrix by BSN is not perfect, it is quite satisfactory, whereas MInD lacks this desired property.

Bag similarity is a reference-based representation, and all training bags are

used as reference bags. By fixing the similarity function as an inner product oper-

ator, the principle of this similarity learning problem is to learn suitable instance75

features. For a target bag, the similarity representation depends on both the tar-

get and all the reference bags. Representation learning for both the target and the

reference bags is a joint optimization problem. In each iteration of BSN training,

all instance features should be updated, which is time-consuming. Thus, we pro-

pose a decoupled training scheme: We first train a MI-Net to obtain all instance80

features; then, we fix the neural features of reference instances and update the

features of target instances.

In summary, the contributions of this study are as follows:
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• We propose a learnable bag similarity representation for MIL. To the best

of our knowledge, this is the first study that integrates similarity learning85

with multi-instance neural networks.

• To solve bag similarity learning problems, we propose a novel bag similarity

network that takes (N +1)×M streams as input. For effective training, we

propose a decoupled training scheme.

• The proposed BSN method has achieved state-of-the-art performance on90

several different MIL tasks.

2. Related Work

2.1. Multi-instance Learning

MIL has long been an active research topic owing to its ability to handle

weakly labeled data. Utilizing weakly labeled data is highly important, because95

labeling for big data is costly. MIL has been applied in various computer vision

[17, 41, 33, 28, 18] and medical image analysis problems [35, 16]. For example,

in object detection, Wang et al. [30] formulated the problem of weakly supervised

object detection as a MIL problem and proposed a relaxed MIL solution that uses

deep learning features as instance representation. Cinbis et al. [5] proposed a100

multi-fold MIL to avoid poor local optimal solutions. Tang et al. [26] proposed a

bag-in-bag formulation for modeling contextual information around objects. In-

vestigating new MIL methods is essential for understanding weakly labeled data.

In MIL, we are given a set of bags X = {X1, X2, ..., XN}. Each bag Xi can

be represented by distinct instances Xi = {xi1, xi2, ..., ximi
}, where xij denotes105

the jth instance in bag Xi and mi denotes the number of instances in this bag.
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We assume that Yi ∈ {0, 1} and yij ∈ {0, 1} represent the label of bag Xi and

the label of instance xij , respectively. During the training phase, only bag labels

are available, whereas instance labels are unknown. There are two standard MIL

constraints regarding bag and instance labels: if Yi = 0, then all instances in the110

corresponding bag Xi are negative; otherwise, at least one instance xij ∈ Xi is

positive.

2.2. Multi-instance Neural Network

In the recent years, neural networks have become the most effective method

for addressing MIL problems. Ilse et al. [13] added an attention module in multi-115

instance neural networks for instance selection and obtained impressive results for

cancer detection in histopathology images. Even in the multi-label setting, Feng

et al. [8] confirmed that deep neural networks are effective.

MI-Net [29] is a typical multi-instance neural network that focuses on MIL

problems. MI-Net contains L fully connected (FC) layers and one MIL pool-120

ing layer (generally, L is equal to 4). The first L − 1 FC layers are followed by

a non-linear transformation such as the rectified linear unit (ReLU) [10], which

learns the representations of all instances in the corresponding bag. Here, x`
ij de-

notes the `th layer output of jth instance xij in bag Xi. The MIL pooling layer is

used to map all instance-level features to obtain bag-level representations. Three125

widely used pooling schemes M(xL−1
ij|j=1...mi

) are mentioned in [29]: 1) max pool-

ing M(xL−1
ij|j=1...mi

) = max
j

xL−1
ij , 2) mean pooling M(xL−1

ij|j=1...mi
) = 1

mi

mi∑
j=1

xL−1
ij ,

and 3) log–sum–exp (LSE) pooling M(xL−1
ij|j=1...mi

) =
log[ 1

mi

mi∑
j=1

exp(r·xL−1
ij )]

r
, where

r is a parameter controlling the smoothness of approximation to the max func-

tion. Thus, regardless of the number of input instances, the MIL pooling layer130
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aggregates them into a bag-level representation. Finally, the probability of a bag

being positive can be calculated by an FC layer with only one neuron and sigmoid

activation, and then the bag label is predicted.

The proposed BSN is also based on neural networks. However, unlike previ-

ous multi-instance networks that learn a bag embedding without considering the135

bag’s relation to other bags, BSN learns a bag embedding by comparing the bag

with the other bags. Furthermore, BSN is different from traditional bag similar-

ity methods that use fixed bag similarity metrics, as it learns bag similarity using

neural networks.

In addition, BSN can be regarded as a special instantiation of memory-augmented140

neural networks [23], which are widely used in meta-learning. Here, memory

refers to external memory and is different from the internal memory in long short-

term memory (LSTM) networks [11]. The reference training bags with their fea-

ture extraction networks can be considered external memory in BSN.

3. Bag Similarity Network for MIL145

Unlike traditional methods, the proposed method addresses MIL problems

from the new perspective of bag similarity learning. In the proposed design, each

bag is represented by a vector of its similarities to other bags in the training set,

and these similarities are treated as a bag-level representation–hence the term bag

similarity network. Figure 2 shows the overall architecture of BSN, where it can150

be seen that to avoid the complications of updating parameters and reduce compu-

tational load, two key steps are required for training. The first is to learn instance-

level representations of reference bags by MI-Net. In the second step, we train the

neural network by computing the similarity of each training bag to the reference
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bags. Furthermore, we propose a Hausdorff pooling layer to generate a vector bag155

representation; based on this, bag classification can be easily carried out by an FC

layer.
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Figure 2: Architecture of Bag Similarity Network

3.1. Instance-level Representations

In Fig. 2, bag-level representations are calculated based on the similarity to all

reference bags. For simplicity, we regard all training bags X = {X1, X2, ..., XN}

as reference bags. To distinguish reference bags from training bags, we denote

the former by XR = {XR1 , XR2 , ..., XRN
}, where N is the number of reference

bags. Then, we follow the MI-Net [29] method to construct a multi-instance neu-

ral network, which contains L FC layers and one MIL pooling layer, as the base

network. We employ the same training strategy in the base network. After train-

ing, instance-level representations of all reference bags are learned. We feed one

reference bag XRi
= {xRi1, xRi2, ..., xRimi

} into the base network, and collect the
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outputs XL−1
Ri

of the (L − 1)-th layer for all instances in bag XRi
. We follow the

same process for all reference bags and obtain suitable instance-level representa-

tions, leading to a reference vector as follows:

XL−1
R = {XL−1

R1
, XL−1

R2
, ..., XL−1

RN
}, (1)

where XL−1
Ri

= {xL−1
Ri1

, xL−1
Ri2

, ..., xL−1
Rimi
} denotes the learned instance-level repre-

sentations of reference bag XRi
.160

3.2. Bag Similarity Matrix

To compute the similarity between bag Xt and the reference bags, we construct

the BSN, which also contains L FC layers and one pooling layer. The first L− 1

layers are used for learning instance-level representations for bag Xt. We denote

the outputs of the (L − 1)th layer by XL−1
t = {xL−1

t1 , xL−1
t2 , ..., xL−1

tmt
}. Then,

we calculate the inner product f(x, y) = xTy of the instances of Xt and each

reference bag to form the bag similarity matrix:

S = [f(XL−1
t , XL−1

R1
), ..., f(XL−1

t , XL−1
RN

)], (2)

where the similarity between Xt and XRi
is represented by f(XL−1

t , XL−1
Ri

), which

is defined as
f(xL−1t1 , xL−1Ri1

) f(xL−1t1 , xL−1Ri2
) ... f(xL−1t1 , xL−1Rimi

)

f(xL−1t2 , xL−1Ri1
) f(xL−1t2 , xL−1Ri2

) ... f(xL−1t2 , xL−1Rimi
)

... ... ... ...

f(xL−1tmt
, xL−1Ri1

) f(xL−1tmt
, xL−1Ri2

) ... f(xL−1tmt
, xL−1Rimi

)

 , (3)

where mt and mi denote the number of instances in Xt and XRi
, respectively.

Therefore, Xt can be represented by a bag similarity matrix, which describes the

similarity of Xt to reference bags XR = {XR1 , XR2 , ..., XRN
}.
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3.3. Hausdorff Pooling165

After calculating the bag similarity matrix S between bag Xt and reference

bags XR, we propose new pooling methods to describe bag similarity. Inspired by

the Hausdorff method [4], we convert the similarity matrix S ∈ Rmt×
∑

i mi into a

bag-level representation H(S) ∈ R1×N that represents the similarity of Xt to all

reference bags XR = {XR1 , XR2 , .., XRN
}. Specifically, we can formulate this

bag-level representation as

H(S) = [h(f(XL−1
t , XL−1

R1
)), h(f(XL−1

t , XL−1
R2

)),

..., h(f(XL−1
t , XL−1

RN
))],

(4)

where h(·) can be one of the following:

max-max pooling : h(A) = max
i

max
j

Aij;

mean-max pooling : h(A) = 1
N

∑N
i=1max

j
Aij;

min-max pooling : h(A) = min
i

max
j

Aij;

mean-mean pooling : h(A) = 1
N

1
M

∑N
i=1

∑M
j=1Aij,

(5)

where A ∈ RN×M stands for the similarity matrix between two bags. It should be

noted that we simply choose mean pooling as MIL pooling in the base network if

mean–mean pooling is adopted in BSN; otherwise, max pooling is used in the base

network. Subsequently, we obtain the bag-level representation H(S) between bag

Xt and all reference bags. Finally, the score of the positive bag Ŷt is calculated by170

an FC layer with one neuron and sigmoid activation.

3.4. Training Loss and Optimization

Another point that should be considered is the loss function for training. To

predict bag labels, it is natural to choose the standard cross entropy loss function,
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which is the same as the loss function in MI-Net [29]:

L(Ŷt, Yt) = −
(
(1− Yt) log(1− Ŷt) + Yt log Ŷt

)
, (6)

where Ŷt is the probability that bag Bt is positive, and Yt is the label of Xt. To

make the BSN algorithm more explicit, we have outlined the training and testing

procedures in Algorithm 1. The reader is referred to the complete algorithm for175

details that cannot be covered in the text.

4. Experiments

In this section, we conduct MIL experiments with BSN on various tasks, in-

cluding drug activation prediction, automatic image annotation, text categoriza-

tion, and medical image diagnosis including colon cancer detection in histopathol-180

ogy images. Moreover, we compare BSN with the following state-of-the-art MIL

methods: mi-SVM and MI-SVM [2], MI-Kernel [9], EM-DD [38], mi-Graph [39],

miVLAD and miFV [31], MInD [4], MI-Net [29], and Attention-based MI-Net

[13].

4.1. Datasets185

MUSK1 and MUSK2 [7] are used to predict the molecular activity of drugs,

where bags are molecules and instances are different conformations of these molecules.

A molecule always exhibits multiple shapes, and each shape is described by a 166-

dimensional feature vector. In this case, a good molecule will bind well to the

target protein if at least one of the shapes is appropriate, whereas a poor molecule190

will not bind well if none of its shapes can bind. Thus, we can formulate this

drug activation prediction as a MIL problem. In MUSK1, there are 476 instances
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Algorithm 1 BSN for MIL
Input: Training bags X = {X1, X2, ..., XN} and corresponding bag labels Y =

{Y1, Y2, ..., YN}; testing bag Xt

Output: Label Ŷt of the testing bag Xt

1: Training:

2: Set all training bags X as reference bags XR = {XR1 , XR2 , ..., XRN
}.

3: Initialize MI-Net and train it on all reference bags

4: for i = 1 to N do

5: Extract instance-level representations of XRi

6: end for

7: Initialize BSN

8: for i = 1 to N do

9: Extract instance-level representations of each instance in bag Xi.

10: Compute bag similarity matrix S of bag Xi and reference bags XR.

11: Perform Hausdorff pooling and obtain the bag-level representation H(S)

of bag Xi.

12: Predict the label Ŷi of bag Xi

13: Compute the loss function L(Ŷi, Yi) and update the weights of BSN.

14: end for

15: Testing:

16: Follow steps 9–12 to predict Ŷt for the testing bag Xt.
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divided into 47 positive bags and 45 negative bags. In MUSK2, 6598 instances

are included, which are divided into 39 positive bags and 63 negative bags.

Fox, Tiger, and Elephant [2] are widely adopted MIL datasets for solving local-195

ized content-based image retrieval problems. The bags are images and instances

are image segments. For each category, positive bags are from the target class

of animal images, and negative bags are randomly chosen from other classes of

animal images. They all consist of 100 positive bags and 100 negative bags, and

each bag contains 2 to 13 instances. Moreover, an instance is represented as a200

230-dimensional feature vector to describe color, texture, and shape information

in an image region.

20 Newsgroups [39] contains posts from newsgroups on 20 subjects for text

categorization—another typical application of MIL. For each category, there are

50 positive bags and 50 negative bags. The positive bags contain an average of205

3.7% positive instances. The instances of negative bags are all randomly drawn

from other categories. Each instance is represented by 200 term frequency-inverse

document frequency features.

Messidor [6, 14] is a public diabetic retinopathy screening dataset that contains

1, 200 eye fundus images from 654 diabetic and 546 healthy patients. Each image210

is resized to 700 × 700 pixels and split up into patches of 135 × 135 pixels. We

regard these images and patches as bags and instances, respectively. Each bag

contains 8 to 12 instances. Each instance is represented by a 687-dimensional

feature vector describing intensity histogram and texture. For data preprocessing,

we reduce the dimensionality to 100 by PCA [32].215

Colon Cancer [13] contains 100 H&E images generated from normal or malig-

nant tissue appearance. The majority of the nuclei of each cell are marked in each
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image. In this dataset, we regard H&E images and image patches as bags and

instances, respectively. As nuclei are associated with multi-class labels, we focus

on epithelial cells and determine whether an H&E image contains one or more220

nuclei from the epithelial class.

4.2. Experiment Setup

The BSN method requires two steps to obtain bag labels during the training

phase. The first is to use MI-Net [29] as the base network for generating instance-

level representations of all reference bags. In the second step, we optimize BSN225

by computing the similarity between reference bags. As mentioned in Sec. 3, the

base network and BSN both contain four FC layers, and the number of neurons in

these layers is 256, 128, 64, and 1. The first three FC layers of the base network

are followed by a MIL-pooling layer to aggregate instance-level representations

into bag-level representations. After learning instance-level representations, BSN230

computes the similarity between the target bag and reference bags. In the next

step, we use the proposed Hausdorff pooling layer to form a feature vector that

provides the bag-level representation from the bag similarity matrix. Finally, in

the last FC layer, we estimate the probability of the input bag being positive.

Regarding the weights of the FC layers, they are initialized by the truncated235

normal distribution [3], where the mean and standard deviation are set to 0 and

0.05, respectively (for the Newsgroups dataset, the standard deviation is set to

0.1). Biases are all initialized to be 0, and the momentum is set to 0.9. The initial

learning rate and weight decay vary from dataset to dataset; details are shown in

Table 1. We divide the learning rate by 2 at 1500 and 3000 iterations and termi-240

nate the training at 5000 iterations in all experiments, except for Messidor. For

Messidor, the learning rate is divided by 2 at 5, 000, 10, 000, 20, 000, and 30, 000
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Table 1: Parameter details for training BSN with MI-Net, including initial learning rate (LR),

weight decay (WD), and the standard deviation of initial weights (W-Std). The parameters for

Colon Cancer dataset are the same as in Attention-based MI-Net [13].

Dataset LR WD W-Std

MUSK1 0.001 0.01 0.05

MUSK2 0.001 0.01 0.05

Fox 0.0005 0.01 0.05

Tiger 0.001 0.01 0.05

Elephant 0.0005 0.01 0.05

20 Newsgroups 0.001 0.001 0.1

Messidor 0.0005 0.001 0.05

iterations, and the training is terminated at 40, 000 iterations. All networks are

optimized by stochastic gradient descent techniques, and the batch input consists

of only one bag for both training and testing. In the Colon Cancer dataset, the245

experimental setting and network architecture follow those in [13]. The hyper-

parameters are selected using cross-validation on training sets. The source code

of the experiments will be provided on publication.

4.3. Experimental Results

We provide results of the BSN for drug activation prediction, content-based250

image retrieval, text categorization, and medical image diagnosis. Following the

standard experimental settings in other related studies, we ran 10-fold cross val-

idations 10 times independently and report the averages over 10 trials for all the

experiments in this part, except Messidor and Colon Cancer dataset, where we

ran five 10-fold cross-validations. Except for MI-Net [29], the results of previous255
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Table 2: Bag classification results (mean ± std) of different methods on MUSK1 and MUSK2

(task: drag activation prediction), as well as Fox, Tiger, and Elephant (task: content-based image

retrieval).

Dataset MUSK1 MUSK2 Fox Tiger Elephant

mi-SVM 0.874 0.836 0.582 0.784 0.822

MI-SVM 0.779 0.843 0.578 0.840 0.814

MI-Kernel 0.880 0.893 0.603 0.842 0.843

EM-DD 0.849± 0.098 0.869± 0.108 0.609± 0.101 0.730± 0.096 0.771± 0.098

mi-Graph 0.889± 0.073 0 .903 ± 0 .086 0.616± 0.079 0 .860 ± 0 .083 0.869± 0.078

miVLAD 0.871± 0.097 0.872± 0.095 0.620± 0.098 0.811± 0.087 0.850± 0.080

miFV 0 .909 ± 0 .089 0.884± 0.094 0.621± 0.109 0.813± 0.083 0.852± 0.081

MInD 0.893± 0.019 0.888± 0.034 0.651± 0.011 0.819± 0.021 0.857± 0.018

MI-Net 0.893± 0.099 0.872± 0.096 0.627± 0.080 0.832± 0.087 0 .891 ± 0 .074

Att. Net 0.892± 0.040 0.858± 0.048 0.615± 0.043 0.839± 0.022 0.868± 0.022

Gated Att. Net 0.900± 0.050 0.863± 0.042 0.603± 0.029 0.845± 0.018 0.857± 0.027

BSN 0.931± 0.094 0.906± 0.109 0 .640 ± 0 .111 0.878± 0.092 0.907± 0.073

MIL methods are from the reference papers. For MI-Net, we re-implemented it

and obtained better results than in [29]. For fair comparison, we used these new

results as higher baselines. All the experimental results were obtained under the

same experimental conditions.

Drug Activation Prediction. Table 2 (second and third columns) provides the av-260

erage accuracy and the corresponding standard deviation of methods under com-

parison. We note that the standard deviation for mi-SVM, MI-SVM, and MI-

Kernel is not available in the original papers and are therefore omitted. The best

performance on each dataset is highlighted in bold, and the second best in ital-

ics. It can be seen that miFV has the second best accuracy (90.9%), and both265

MI-Net and Attention Net reach approximately 89.3%, slightly behind miFV on
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Table 3: Bag classification results of different methods on 20 Newsgroups (task: text categoriza-

tion).
Dataset MI-Kernel mi-Graph miFV MInD MI-Net Att. Net Gated Att. Net BSN

alt.atheism 0.602± 0.039 0.655± 0.040 0.848± 0.119 0 .861 ± 0 .089 0.846± 0.101 0.784± 0.084 0.780± 0.074 0.903± 0.101

comp.graphics 0.470± 0.033 0.778± 0.016 0.594± 0.120 0.825± 0.118 0 .831 ± 0 .123 0.774± 0.081 0.764± 0.073 0.861± 0.134

comp.windows.misc 0.510± 0.052 0.631± 0.015 0.615± 0.172 0 .730 ± 0 .094 0 .730 ± 0 .112 0.686± 0.088 0.700± 0.080 0.769± 0.101

comp.ibm.pc.hardware 0.469± 0.036 0.595± 0.027 0.665± 0.147 0.780± 0.127 0 .803 ± 0 .155 0.632± 0.087 0.640± 0.080 0.813± 0.29

comp.sys.mac.hardware 0.445± 0.032 0.617± 0.048 0.660± 0.157 0 .835 ± 0 .098 0.811± 0.138 0.744± 0.084 0.754± 0.082 0.865± 0.113

comp.window.x 0.508± 0.043 0.698± 0.021 0.768± 0.155 0.785± 0.111 0 .836 ± 0 .135 0.766± 0.093 0.780± 0.075 0.869± 0.111

misc.forsale 0.518± 0.025 0.552± 0.027 0.565± 0.146 0 .729 ± 0 .102 0.707± 0.119 0.706± 0.076 0.674± 0.072 0.768± 0.128

rec.autos 0.529± 0.033 0.720± 0.037 0.667± 0.166 0.775± 0.088 0 .812 ± 0 .129 0.762± 0.081 0.724± 0.091 0.830± 0.121

rec.motorcycles 0.506± 0.035 0.640± 0.028 0.802± 0.144 0.577± 0.102 0 .853 ± 0 .119 0.750± 0.097 0.814± 0.066 0.868± 0.116

rec.sport.baseball 0.517± 0.028 0.647± 0.031 0.779± 0.148 0.837± 0.078 0 .871 ± 0 .113 0.774± 0.080 0.790± 0.078 0.887± 0.113

rec.sport.hockey 0.513± 0.034 0.850± 0.025 0.823± 0.137 0.833± 0.096 0.918± 0.111 0 .936 ± 0 .041 0.932± 0.045 0.947± 0.085

sci.crypt 0.563± 0.036 0.696± 0.021 0.760± 0.146 0.768± 0.122 0 .808 ± 0 .154 0.804± 0.063 0.748± 0.088 0.826± 0.142

sci.electronics 0.506± 0.019 0.871± 0.017 0.555± 0.156 0.940± 0.078 0 .928 ± 0 .090 0.854± 0.053 0.828± 0.064 0.927± 0.088

sci.med 0.506± 0.019 0.621± 0.039 0.783± 0.125 0.832± 0.091 0 .862 ± 0 .111 0.772± 0.090 0.742± 0.101 0.885± 0.107

sci.space 0.547± 0.025 0.757± 0.034 0.818± 0.131 0.796± 0.110 0.820± 0.087 0 .888 ± 0 .062 0.894± 0.063 0.869± 0.112

soc.religion.christian 0.492± 0.034 0.590± 0.047 0.814± 0.138 0 .841 ± 0 .140 0.829± 0.122 0.726± 0.088 0.708± 0.100 0.878± 0.113

talk.politics.guns 0.477± 0.038 0.585± 0.060 0.747± 0.150 0 .806 ± 0 .094 0.782± 0.095 0.714± 0.074 0.708± 0.100 0.814± 0.117

talk.politics.mideast 0.559± 0.028 0.736± 0.026 0.793± 0.135 0 .830 ± 0 .108 0.825± 0.119 0.750± 0.084 0.784± 0.064 0.867± 0.127

talk.politics.misc 0.515± 0.037 0.704± 0.036 0.697± 0.152 0.720± 0.119 0.748± 0.140 0.788± 0.091 0 .806 ± 0 .078 0.829± 0.135

talk.religion.misc 0.554± 0.043 0.633± 0.035 0.739± 0.151 0.725± 0.104 0 .778 ± 0 .114 0.738± 0.074 0.746± 0.082 0.821± 0.115

average 0.515 0.679 0.726 0.791 0 .820 0.767 0.766 0.855

MUSK1. The proposed method achieves the best result, namely, 93.1%, out-

performing miFV and MI-Net/Gated Att. Net by 2.2% and more than 3%, re-

spectively. The efficacy of BSN is further confirmed on MUSK2, although the

improvement over the second best performance (90.3%) obtained by mi-Graph is270

not as pronounced as that over miFV on MUSK2. It is worth mentioning that,

compared with miFV and mi-Graph, BSN is considerably more stable. Moreover,

compared with the performance of MI-Net, the performance of BSN is signifi-

cantly and consistently enhanced by computing the similarity between bags and

treating it as a bag-level reference to predict bag labels. That is, the effectiveness275

of the proposed strategy is corroborated.

Content-based Image Retrieval. Content-based image retrieval can be formu-

lated as a MIL problem, namely, to identify the target objects in images. To solve
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Figure 3: Effectiveness of the proposed bag similarity representation on MUSK1, MUSK2, Fox,

Tiger, Elephant, 20 Newsgroups, and Messidor datasets

this problem, we conduct experiments on three animal image datasets (Fox, Tiger,

and Elephant). The numerical results are given in Table 2 (last three columns) and280

indicate that BSN achieves superior performance on Tiger and Elephant, and com-

petitive performance on Fox. The average prediction accuracy on these datasets

was improved by 1.5% compared with that of MI-Net. By describing bag-level

representations based on bag similarity, we obtain more robust bag label predic-

tions and avoid being trapped into local optima.285

Text Categorization. There are several studies concerned with the application of

MIL to text categorization. Comparisons are made between MI-Kernel, mi-Graph,

miFV, MInD, MI-Net, and BSN. Table 3 provides the average accuracy over 10

runs. It can be seen that BSN outperforms all competitors in all cases except for
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sci.electronics, where the accuracy of MInD (best) and MI-Net (second best) is290

higher by 1.3% and 0.1%, respectively. The average accuracy on all 20 datasets

indicates that both MI-Net and BSN outperform the others, including MI-Kernel,

mi-Graph, and miFV, by approximately 10%. Furthermore, the average accuracy

of BSN is higher than that of MI-Net and MInD by 3.5% and 8.1%, respectively.

Table 4: Comparison of different methods (mean±std) for bag classification on Messidor dataset

mi-SVM MI-SVM miVLAD miFV MInD MI-Net Att.Net Gated Att. Net BSN

0.620 0.640 0.691 0.715 0.665 0 .730 0.703 0.698 0.737

±0.039 ±0.050 ±0.037 ±0.047 ±0.071 ±0.051 ±0.041 ±0.048 ±0.050

Medical Image Diagnosis. In addition to drug activation prediction, localized295

content-based image retrieval, and text categorization, medical image diagnosis is

another typical application of MIL. Thus, Messidor, a public diabetic retinopathy

screening dataset, is also included in our experiments. We used 10-fold cross-

validation. In each fold, there are 1, 080 bags (90% bags of this dataset) for train-

ing. Unlike in the previous datasets, where the entire training set was used as300

reference bags, we select the 150 most positive bags and 150 most negative bags

by MI-Net as reference bags to reduce computational load. Table 4 shows that

BSN achieves the best result on Messidor, outperforming miVLAD, miFV, and

MI-Net by 6.7%, 3.1%, and 1.0%, respectively. Furthermore, it outperforms mi-

SVM, MI-SVM, and MInD by a large margin.305

Colon Cancer Detection. There are more MIL studies [25, 13] focusing on au-

tomatic detection of cancerous regions in H&E images to facilitate medical di-

agnosis. We choose the Colon Cancer dataset [13] on this task to compare the

proposed method with other deep learning MIL methods. Table 5 presents the re-
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Table 5: Comparison of different methods (mean ± std) for bag classification on Colon Cancer

dataset

Method Accuracy precision Recall F-score

Instance+max 0.842± 0.021 0.866± 0.017 0.816± 0.031 0.839± 0.023

Embedding+max 0.824± 0.015 0.884± 0.014 0.753± 0.020 0.813± 0.017

Att. Net 0.904± 0.011 0.953± 0.014 0 .855 ± 0 .017 0.901± 0.011

Gated Att. Net 0 .898 ± 0 .020 0 .944 ± 0 .016 0.851± 0.035 0 .893 ± 0 .022

BSN 0.869± 0.008 0.820± 0.019 0.983± 0.019 0.886± 0.030

sults of Attention-based MI-Net (Att. Net) [13], Gated Attention MI-Net (Gated310

Att. Net) [13], MI-Nets (Instance+max and Embedding+max), and BSN.

The results demonstrate that Att. Net obtains the best precision (95.3±1.4%),

whereas BSN obtains the best recall (98.3 ± 1.9%). The overall performance is

measured by accuracy and the F-score. It is concluded that BSN outperforms

MI-Nets (Instance+max and Embedding+max) but is worse than Att. Nets. This315

is because the reference H&E images are highly similar and the similarity repre-

sentations in BSN are not sufficiently discriminative. Therefore, for this task, we

suggest combining BSN with Attention-based MI-Nets.

5. Ablation Study and Discussion

Effectiveness of Bag Similarity Representation. We have already argued320

that the proposed bag similarity representation are superior to other methods such

as MI-Net. To justify the argument and indicate the improvement, we offer a de-

tailed comparison between the proposed BSN and MI-Net in Fig. 3. The average

accuracy of BSN on the 20 Newsgroups dataset was improved by 4.3% compared
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with that of MI-Net, whereas the average accuracy on the MUSK, animal, and325

Messidor datasets was improved by 3.2%. As both BSN and MI-Net are based

on the same instance feature learning network, the results clearly demonstrate that

bag similarity representation is useful for MIL problems. We recall the compari-

son in Fig. 1, where it is seen that BSN tends to obtain a block diagonal similarity

matrix. This is a highly desired property for both clustering and classification in330

machine learning, as it is related to a group itself and simultaneously assists in

discriminating among different groups. For further performance improvement, it

would be interesting to design the training loss function so that diagonal-blockness

may be achieved as much as possible.

Influence of Different Hausdorff Pooling Functions As mentioned previ-335

ously, we introduce four Hausdorff pooling methods to convert the bag similar-

ity matrix into a bag-level feature vector: max–max, mean–max, min–max, and

mean–mean pooling functions, which are all differentiable. Usually, the second

operator in Hausdorff polling is preferably a max or mean function. We compare

the influence of these four pooling methods on MUSK1, MUSK2, Fox, Tiger, and340

Elephant datasets in Fig. 4. It can be seen that the four pooling methods yield

comparable results on the MUSK1, MUSK2, and Fox datasets. Mean–max and

mean–mean pooling are slightly better than max–max and min–max pooling on

the Tiger dataset, whereas max–max and mean–max pooling are better than min–

max and mean–mean pooling on the Elephant dataset. In spite of the slight differ-345

ence in performance, if we consider the high non-linearity of the neural network

and the comparisons provided in Sec. 4, we can still appreciate the robustness and

stability of the bag similarity learning framework.

Necessity of Decoupled Training. In most learning tasks, we favor end-to-
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Figure 4: Comparison of different MIL pooling methods on MUSK1, MUSK2, Fox, Tiger, and

Elephant datasets

end optimization. However, for our target task, it is impractical to train a fully350

end-to-end BSN, as it requires updating the instance-level representations of all

reference bags at every iteration. The time complexity of training a fully end-

to-end BSN is proportional to the number of reference/training bags. If there

are n training bags, a fully end-to-end learning scheme will be n times slower

than the proposed decoupled scheme. In addition, the interdependence of instance355

feature learning and bag similarity learning increases model complexity. Hence,

to resolve complex dependencies and reduce training cost, a trade-off is necessary,

such as the proposed decoupling.

Ineffectiveness of Finetuning from Pre-trained Models. A large number

of neural network studies adopt a pre-trained model, such as AlexNet [15] and360

GoogLeNet [24], and then finetune the network according to this model. The

underlying principle of the finetuning strategy is to transfer the knowledge in pre-

trained models for a new task. Those pre-trained models are most likely trained
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on large-scale image datasets, such as ImageNet [22], and are able to capture

high-level (such as category-level) image information to obtain an effective rep-365

resentation. However, in MIL problems, finetuning is ineffective. This is largely

due to the small scale of most MIL datasets, which makes learning a suitable pre-

trained model difficult. In our experiments, we also attempted to initialize the

(N + 1)-th stream (for the target bag) (Fig. 2) with the well-trained MI-Net (for

the reference bag). We also notice a decrease in performance. These results hint370

that the similarity representation is quite different from the embedded bag repre-

sentation because similarity contains rich contextual/global information, whereas

the embedded bag representation contains only individual information.

6. Conclusion

We proposed BSN, a novel bag similarity network for MIL problems. BSN375

achieved state-of-the-art performance on widely used MIL benchmarks. Its main

advantage is that it can learn a discriminative bag similarity representation with

rich contextual information. Compared with previous bag similarity techniques, it

is a learnable metric, and thus it is more effective in various types of data in var-

ious domains. For effective learning, a decoupled training scheme was designed380

by considering the characteristics of MIL and the complexity of the model. BSN

demonstrated its ability to achieve the desired diagonal-blockness of the similar-

ity matrix, which is critical for clustering and classification in machine learning

theory. This ability additionally brings robustness and stability to BSN.
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