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Abstract

This paper presents an effective deep attention network for joint hand gesture

localization and recognition using static RGB-D images. Our method trains a

CNN framework based on a soft attention mechanism in an end-to-end manner,

which is capable of automatically localizing hands and classifying gestures using

a single network rather than relying on the conventional means of stage-wise

hand segmentation/detection and classification. More precisely, our attention

network first computes the weight for each proposal generated from the entire

image, in order to judge the probability of the hand appearing in a given region.

It then implements a global-sum operation for all proposals, which is influenced

by their corresponding weights, in order to obtain a representation of the entire

image. We demonstrate the feasibility and effectiveness of our method through

extensive experiments on the NTU Hand Digits (NTU-HD) benchmark and the

challenging HUST American Sign Language (HUST-ASL) dataset. Moreover,

the proposed attention network is simple to train, without requiring bounding-

box or segmentation mask annotations, which makes it easy to apply in hand

gesture recognition systems. Based on the proposed attention network and taken

RGB-D images as input, we obtain the state-of-the-art hand gesture recognition

performance on the challenging HUST-ASL dataset.
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1. Introduction

Lately, hand gesture recognition has become increasingly important, because

of the increasingly frequent interaction between human beings and machines in

applications such as remote-control games, virtual reality, and sign language

recognition. Even though many studies [25, 8, 41, 14, 21] have contributed5

to this field, hand gesture recognition still has a long way to go for successful

real-environment applications.

In general, the problem can be classified into two branches, namely static

and dynamic situations. Dynamic hand gesture recognition attempts to explore

spatial-temporal characteristics, while static recognition devotes its attention to10

the internal information of a single image. This paper focuses on static hand-

gesture recognition.

The study of static hand-gesture recognition is meaningful, because different

hand shapes convey specific information with no motion cues. In addition, it

can help reduce redundant frames in dynamic problems.15

The components of static hand gesture recognition always consist of three

stages, as shown in Fig. 1(a). These are image acquisition, hand localization,

and gesture classification.

First, concerning image acquisition, sensors such as the Microsoft Kinect,

ASUS Xtion, and Intel RealSense allow us to collect gesture data easily and20

conveniently. It must be stressed that in most cases, we can obtain not only

color images, but also pixel-wise depth cues.

The second part is called hand localization, and this is indispensable. Most

previous approaches [25, 8, 20] take advantage of depth information to solve this

problem. They assume that the hand of the user is always in front of the whole25

body and background, and then set a threshold to segment the hand.

Finally, regarding the task of classification, conventional methods need to
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Figure 1: Comparison between the general framework of static hand gesture recognition and

ours. The left shared dashed rectangular block shows the process of image acquisition. After

this, there are two branches: (a) General framework, in which localization and classification

are two independent modules; (b) our framework, in which localization and classification are

in a unified network using a soft attention mechanism.

extract features, using the histogram of oriented gradients (HOG) [6], histogram

of 3D facets (H3DF) [49], and so on. Once the hand features are extracted, they

will be input to a classifier, such as a support vector machine (SVM) or ran-30

dom forest. Recently, Ren et al. [45] proposed a direction normalization method

based on the multi-scale weighted histogram of contour direction (MSWHCD),

which counts the direction of the contour point to focus on the most significant

hand features in the first-person view of wearable devices. Feng et al. [8] pro-

posed a novel hand-crafted descriptor by extracting bag of contour fragments35

(BCF) features from depth projection maps (DPM), referred to as BCF-DPM,

which captures shape and structure information, and can deal with occlusion,

missing parts, and deformation.

However, this traditional framework of static hand-gesture recognition has

its limitations: 1) It assumes that the hand has the lowest values in the depth40

map, which is not robust to noise. Moreover, it is not user-friendly, as users are

constrained to place their hand at the nearest place to the sensor. 2) It uses

either a color image or depth image, and mostly fails to deeply learn features

for gesture recognition. 3) It treats hand localization and gesture recognition as
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two separate steps. In this case, if hand localization fails, then it is impossible45

to correctly classify gestures, and the localization feature is not optimized for

gesture classification.

Recently, the field of computer vision has been tremendously influenced by

the rapid development of deep learning. Convolutional neural networks (CNNs)

[16, 42, 48] have demonstrated their formidable power in extracting the discrim-50

inative features of images.

Inspired by the potential of CNNs, we propose a novel deep-CNN framework

to jointly localize and recognize hand gestures using RGB-D images in an end-

to-end manner, as shown in Fig. 1(b). Specifically, our network first computes

the feature map of the four-channel RGB-D image, and then it makes use of the55

region-of-interest (RoI) pooling layer [9], as well as several fully connected (FC)

layers, in order to obtain the features of each proposal. Subsequently, these

features will be fed into an attention network, in which their weights will be

softly computed and assigned to the corresponding proposals. By introducing

this kind of attention mechanism, we can gradually assign larger weights to the60

most pertinent regions. In particular, in the task of hand gesture recognition,

it is obvious that the most pertinent regions are those surrounding the hand.

Next, the feature of the whole image is computed by implementing a weighted

global-sum operation over the vectors of all proposals. The weights are auto-

matically learned in the proposed attention network. It must be clarified that65

our attention network follows the principle of soft attention mechanisms [5],

which means that all subsets of the input are processed, instead of selecting

a few subsets to attend. Finally, once the final feature vector of the image is

obtained, we can transform this into a vector of length n, where n denotes the

number of classes, and then proceed to perform the classification.70

RGB is a method of encoding color, whereas depth images contain abun-

dant geometric information. Although RGB images and depth images present

information from different angles, our holistic network is still capable of locating

approximately the same hand position in both, because the attention mecha-

nism is designed to find the place that contributes most to the specific task.75
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Moreover, the CNN itself has strong capabilities in feature extraction and rep-

resentation, which can help the above two types of information to work together

complementarily.

In summary, this paper provides the following contributions:

• We propose a deep end-to-end CNN framework for static hand gesture80

recognition based on a soft attention mechanism, which is capable of auto-

matically localizing the hand and classifying the gesture with an excellent

performance.

• Thanks to the soft attention mechanism, we perform gesture localization

in a weakly supervised manner, which does not require bounding-box or85

segmentation annotations in training images. Thus, the proposed method

is easy to deploy in hand gesture-recognition systems.

• Our network can robustly handle color images and depth cues in the field

of static hand gesture recognition. More importantly, with the fusion of

these two kinds of information, namely RGB-D images, the performance90

will be further improved.

The remainder of this paper is organized as follows. Section 2 reviews related

work from recent years. Section 3 introduces our method in detail. Section 4

presents the experimental results and some analyses. The paper closes with

conclusions and a discussion in Section 5.95

2. Related Work

Most previous work dealt with gesture localization and classification sepa-

rately. Concerning hand localization, also known as hand detection, [25, 8, 20]

simply segmented the hand out of the other parts by configuring a threshold,

which was estimated from particular circumstances using depth cues. The au-100

thors of [18, 36] utilized skin color maps without using depth information, and

[22, 33] achieved better segmentation results by combining color-based skin de-

tection and depth thresholding. Regarding classification, many conventional
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approaches relied on hand-crafted features [6, 25, 49, 8, 38, 1, 2], which may

capture silhouette, shape, and structure information.105

Recently, CNNs have demonstrated excellent performance in many vision

tasks, such as object detection [10, 9], image classification [31, 28], and seman-

tic segmentation [19, 32]. It is pleasing that many challenging human-related

vision tasks benefit significantly from this technique. For example, for human

pose recovery[34, 11, 12, 47], Hong et al. [12] used non-linear mapping with a110

multi-layered deep neural network based on feature extraction, with multi-modal

fusion and back-propagation optimization. Yu et al. [47] proposed a novel pose

recovery framework by simultaneously learning the tasks of joint localization

and detection. For hand gesture recognition, Koller et al. [14] exploited the

training of a CNN with an expectation maximization (EM) algorithm on 1115

million hand images, and achieved a state-of-the-art performance on two large

public sign language datasets. Molchanov et al. [21] presented a recurrent 3D

CNN for the online detection and classification of hand gestures. However, these

studies focus on the dynamic hand gesture recognition task, and use cropped

data after tracking hands, i.e., separating the procedures of localization and120

classification. There has been relatively less work regarding static hand gesture

recognition, while Yamashita et al. [41] seem to be the first to exploit CNNs and

treat localization and classification together. They proposed a deep CNN with

a bottom-up structure, incorporating a special layer for binary image extraction

that can segment the hand. We believe it is advantageous to address localiza-125

tion and classification jointly, as they are highly interdependent. Therefore, we

attempt to integrate them into a single network in a different manner, and train

it end-to-end.

Recently, the attention mechanism has been grafted onto the deep learning

framework with considerable success. Many typical computer vision tasks, such130

as image classification [39], object detection [46], and semantic segmentation [3]

have made tremendous advances under the influence of attention. Furthermore,

[40, 44] utilized attention models for image and video captioning. Yang et

al. [43] adapted stacked attention networks (SANs) to solve image question an-
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swering problems. Lee et al. [17] presented recursive recurrent neural networks135

with attention modeling for lexicon-free optical character recognition (OCR)

in the wild. Kuen et al. [15] also made use of recurrent attentional networks

for saliency detection. In addition, in the scope of machine translation, speech

recognition, and natural language processing, researchers have extensively ex-

plored the value of attention models. Hand recognition is difficult, due to the140

variation in hands and complicated backgrounds, and there is no previous work

employing an attention mechanism for this task. Here, we propose an attention

network that can softly weight the proposal features in order to judge which

region is most likely to enclose the hand.

Another factor that contributes to our success is the use of RGB-D images.145

Benefitting from the widespread of commodity depth cameras, more and more

RGB-D data is available. RGB-D images carry abundant information, with not

only color data but also depth cues, which interests many researchers [27, 4].

For example, [37] encodes depth using three channels (HHA), which makes it

possible to treat depth data like normal RGB images, which can be directly fed150

into a pre-trained CNN model. Concerning hand-related work, most approaches

focus on hand pose estimation [30, 26] using RGB-D images. Unlike these

methods, we simply treat depth cues as a normal channel of input to the CNN.

It should be emphasized that our method is related to fast region-based con-

volutional neural networking (Fast R-CNN) [9], which shares the time-consuming155

convolutional computation of different proposals by an RoI pooling layer, and

is applied to object detection. However, our method is quite different from Fast

R-CNN: 1) The objective of Fast R-CNN is to detect objects in images, whereas

we are concerned with gesture recognition. 2) The inputs of Fast R-CNN are

color images, whereas our inputs are RGB-D images. 3) The training ground-160

truths of Fast R-CNN include bounding boxes for objects, whereas we only take

gesture categories as supervisions.
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Figure 2: Architecture of our network. The red rectangles in the image represent the proposals

generated by the sliding window. Here, we only choose five proposals/windows as representa-

tives. We deepen the color of the window that encloses the hand to convey that it is the most

anticipated one, while it is not in fact special. In the attention network, the shades of filled

circles represent the values of weights. The darker the circle, the more attention the network

will pay. A circle with a point in it indicates an element-wise operation, while one with a plus

sign indicates the global-sum operation.

3. Method

In this section, we will first concisely describe the whole framework, and

then introduce each step in detail. The overall architecture of our network is165

shown in Fig. 2. First, the entire input image goes through a pre-trained CNN

model to extract image-level features, and then we utilize an RoI pooling layer

and several fully-connected (FC) layers to obtain the representation of each

proposal generated by a sliding window. Second, we construct the attention

network to acquire the weight of each proposal, in order to decide which part170

we will focus on. Furthermore, we need to aggregate all the feature vectors of

the proposals using a global-sum operation. Third, we can obtain the image-

level features after applying our attention network, and just need to classify

these.

It is worth noting that when training the network, we only give image-175

level annotations, with no region-related labels, which contributes to the weakly

supervised learning method for hand localization.

In order to introduce our approach in a digestible manner, we divide the
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whole framework into four modules, which are an input layer with aligned RGB-

D data, feature extraction via the RoI pooling layer, the attention network for180

gesture localization, and gesture classification using the softmax loss.

3.1. Input layer with aligned RGB-D data

The input of our network consists of two components. The first is RGB-D

images, which constitute the fusion of color images and depth cues. Here, we

treat the depth cues as a normal channel, similar to other color channels, and185

align it to the primary RGB images, which means we need to restrict the depth

value to a range of [0,255]. Specifically, we formulate the conversion function as

Eq. (1)

Dσ(i, j) =


⌊
max(D)−D(i,j)
max(D)−min(D) × 255

⌋
if D(i, j) 6= 0

0 if D(i, j) = 0,
(1)

where D denotes the set of the depth values in a single image, and (i, j) repre-

sents the index of each pixel. Furthermore, max(•) and min(•) denote the func-190

tions obtaining the maximum and minimum values in the depth map, respec-

tively. Consequently, Dσ is the set of depth values after conversion. In addition,

there exist some bad pixels (value 0) resulting from the depth camera failing to

collect information, and these can be deemed as the farthest points. The second

component consists of proposals, which are a set of generative bounding boxes.195

There exist many effective proposal generating approaches, such as sliding win-

dow, selective search [35], and edge boxes [50]. In our approach, we should

generate multiple proposals in order to make sure that the hand is included, so

that the subsequent work makes sense. We choose the sliding window here, for

its simplicity and stability. The sizes and intervals of the windows can easily200

be controlled, and as a result the hand can be chosen precisely. We also utilize

multiple sizes of windows to cope with various scales of hands.

Parameter setting information will be detailed in Section 4.

9



3.2. Feature extraction via RoI pooling layer

Fine-tuning is a universal trick in training a deep network. We train the205

target dataset using of a pre-trained CNN model, which has been trained on a

large-scale dataset such as ImageNet [7].

In order to extract representative features using the CNN, we fine-tune our

network on a widely used deep CNN model named VGG16 [29], which has 13

convolutional layers, five max pooling layers, and three FC layers. The network210

processes the entire image using these convolutional and max pooling layers to

produce a feature map that can represent the image abstractly.

However, some alterations are necessary because of changes in the input

data. First, we need to increase the channel of the first convolutional layer from

three to four, to fit the RGB-D condition. Second, we replace the last max215

pooling layer by an RoI pooling layer, inspired by Fast R-CNN [9], because a

set of proposals will also be fed into our network.

The RoI is a rectangular window within an entire feature map, defined by

a four-tuple (x, y, h, w), where (x, y) represents the top-left corner and (h,w)

represents the height and width. Each RoI window will be divided into an220

H ×W grid, with sub-windows of approximate size h/H × w/W . After this,

we can obtain the value of each grid cell by taking the maximum value in the

corresponding sub-window. It should be noted that the RoI pooling opera-

tion described above is applied independently to each feature map channel. In

essence, the RoI pooling layer is a variant of the max pooling layer, and is sim-225

plified from the spatial pyramid pooling layer used in SPPnets [10] with multiple

pyramid levels that can output to a fixed-size feature vector.

More details of the employed CNN architectures will be given in Section 4.

3.3. Attention network for gesture localization

The core part of the framework is our attention network. After implementing230

the input layer and feature extraction introduced above, we obtain the represen-

tation of each proposal. These features will be fed into our attention network, in

which the weights that decide which part receives special attention will be softly
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computed. This process can be deemed to judge the probability that a hand

lies within each region. Next, the network will proceed to successive element-235

wise and global-sum operations. We will present a more detailed mathematical

expression in the following paragraph.

As mentioned earlier, the input of our attention network is a proposal feature

matrix V = [v1,v2, ...,vN ]T ∈ RN×M , where N denotes the number of propos-

als and M is the output number of fully connected neurons. Next comes the240

core part, where we compute a weight vector W = [w1, w2, ..., wN ]T ∈ RN×1 for

the densely-collected proposals. This computational procedure can be deemed

as regressing a value wi using a vector vi realized by a fully connected layer.

After determining the weight vector W, we need to further normalize it using

the softmax function:245

wi =
ewi∑N
k=1 e

wk

, (2)

where e(•) is the natural exponential function. This process intuitively reflects

the importance of the features of each proposal, and can be further seen as a

probability computation for all proposals to estimate the presence of the hand

in a corresponding region.

The Hadamard product would then involve acting on the matrix V with the250

weight W, i.e.,

U = V �W = [u1,u2, ...,uN ]T ∈ RN×M , (3)

The vector ui in the matrix U is the new feature vector of the i-th proposal.

Considering that we only have image-level annotations, we should obtain

the feature vector of the whole image by aggregating these vectors. Thus, we

globally sum the matrix U to be an M -dimensional vector F = [f1, f2, ..., fM ]T ∈255

RM×1, which can be deemed as the final feature vector of the whole image, where

fi =

N∑
j=1

uj,i. (4)

We can imagine that if the network has a pair of eyes, then the vector F

is the feedback from viewing the entire image, and the region with the highest
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weight will receive the most attention. The network can iteratively adapt the

weight to decide which proposal will be paid special attention.260

3.4. Gesture classification using softmax loss

After implementing our attention network, we need to perform a normal

classification task. The image feature vector is transformed to a length C, where

C is the number of hand gesture classes that need to be classified. Narrowly,

let the classifier be X = [x1,x2, ...,xC ] ∈ RM×C . Then, we can calculate the265

predicted score vector as follows:

S = [s1, s2, ..., sC ]T = XTF ∈ RC×1, (5)

o = arg max
j

esj∑C
k=1 e

sk
, (6)

L(S, Y ) = − log
esY∑C
k=1 e

sk
= log

C∑
k=1

esk − sY . (7)

We can then obtain the predicted result based on the softmax function, as in

Eq. (6). When training the network, we formulate the softmax loss function as270

L(S, Y ) in Eq. (7), where Y is the input label of each image.

3.5. Computational complexity analysis

The measurement of floating-point operations (FLOPs) can reflect the com-

putational complexity of a network. For example, the Alexnet has 725M FLOPs

and the VGG16 has 15484M FLOPs, which means that VGG16 is much more275

complex than Alexnet. More than 90% of the FLOPs are caused by their con-

volutional layers. However, the dominating computational cost of our holistic

network comes from our proposed attention network, because we need to regress

the weight of each proposal simultaneously. This implies that the computational

complexity of our network is proportional to the number of proposals. Conse-280

quently, the eventual outcome is about 900B FLOPs if we input 2000 proposals.
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4. Experiments

In this section, we will concisely introduce the two datasets, and then present

the details of implementing the experiments. Then, the localization and classifi-

cation results will be presented, demonstrating the effectiveness of our method.285

Moreover, further analyses of our network will be provided. In addition, codes

and trained models for reproducing the results will be made available upon

acceptance.

4.1. Datasets

In order to demonstrate that the proposed network can jointly localize and290

classify hand gestures in an end-to-end deep network without explicit hand re-

gion segmentation, the chosen dataset ought to meet the following two require-

ments: 1) It is a static dataset, which means that each gesture is represented

by a single image, not based on video. 2) The input image has a complicated

background, and the hand only occupies a small portion of the image. If the295

attention network cannot lead the network to pay special attention to the win-

dow enclosing the hand, then the classification result will be greatly impacted

by background noises.

After careful selection, our method will be evaluated on a benchmark dataset

called the NTU Hand Digits (NTU-HD) dataset [25], and a challenging dataset300

called the HUST American Sign Language (HUST-ASL) dataset, which is de-

rived from [8]. More details regarding the two datasets are given below.

4.1.1. NTU Hand Digits dataset

The NTU-HD dataset is a small dataset, which contains a total of 1000

images. There are 10 subjects, each of which performs 10 different gestures and305

repeats each of these 10 times. Color and depth images can both be obtained.

4.1.2. HUST American Sign Language dataset

The HUST-ASL dataset was generated by Media and Communication Lab

in Huazhong University of Science and Technology, and was first used in [8] in
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2016. It was collected using Microsoft Kinect with 5440 color images and their310

corresponding 5440 depth maps. Ten participants are involved, and 34 hand

gestures are performed to imitate the digits 0 to 9 and the 24 English letters

other than j and z. These are imitated following the samples from the ASL

Finger Spelling dataset [23]. Each gesture is repeated 16 times with different

degrees of deflection in different orientations. In particular, the performers need315

to revolve their hands around their wrists or elbows within a certain degree. It

is difficult to localize the hand, because the hand only occupies less than about

two percent of pixels in a single image.

4.2. Implementation details

In order to exhibit the experimental configurations more clearly, we first320

present them in Table 1, and will explain each part in detail.

4.2.1. Data preparation

As mentioned in Section 3, we need to fuse the color and depth images to

create RGB-D images, and then generate proposals using sliding windows. We

set three sizes of windows, for the sake of having different sizes and distances to325

performers in front of the sensor when collecting data. These are 64×64, 96×96,

and 128×128. Moreover, the interval size is set to 32, ensuring that it encloses

all the hands in the datasets.

Our datasets are not very large, so we take some effective strategies to avoid

over-fitting to some extent.330

One is a known method called data augmentation. Specifically, image pyra-

mids [10] are taken with five scales (480, 576, 688, 864, and 1200). During

training, we randomly sample a pyramid scale each time an image is sampled.

At the test time, pyramids of each scale will be evaluated, and the scores will

be averaged to obtain the final result.335

Another strategy employed is leave-one-subject-out, which is a means of cross

validation. If a dataset is performed by N subjects, then N − 1 subjects are

14



Table 1: Experimental configurations.

Data Preparation

Image Pyramids setting (short side) 480,576,688,864,1200

Sliding window size 64*64,96*96,128*128

Sliding window interval 32

SGD Hyper-parameter Setting

Weight initialization Gaussian(0, 0.01)

Bias initialization 0

Batch size 8

Learning rate(new added layers) 0.001

Learning rate(original layers) 0.0001

Momentum 0.9

Decay for weight&bias 0.0005

Platform and Device

Platform Caffe

GPU NVIDIA GTX TitanX

selected for training, while the remaining one is used for testing. This procedure

is repeated for every subject, and an average accuracy is calculated.

4.2.2. Network architecture modifications340

As stated in Section 3, we fine-tuned our network based on VGG16 [29] with

some transformations.

First, we need to accommodate filters in the first convolutional layer, con-

sidering the circumstances of RGB-D images. Under normal conditions, the

channels of the filters in this layer correspond to the three classical R, G, and345

B channels separately. However, RGB-D images have four channels. We adopt

the simplest method of taking average of the R, G, and B channels for the newly

added depth channel.
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Second, the RoI pooling layer, which converts the features inside each region

of interest into a small feature map with a fixed length of H ×W , where we set350

H = W = 7, is the substitute for the last max pooling layer.

Third, we introduce our attention network between several fully connected

layers immediately after the RoI pooling layer and the last fully connected layer

for classifying. More details are presented in Section 3.

Lastly, the number of outputs of the last fully connected layer is changed355

into the number of categories of hand gestures according to the datasets, which

is 10 for NTU-HD and 34 for HUST-ASL.

4.2.3. Hyper-parameters for training

When training the network, the batch size is set to eight. Newly added layers

are initialized from zero-mean Gaussian distributions with standard deviations360

of 0.01, and the biases are initialized as 0. Newly added layers have a learning

rate of 0.001, which is ten times greater than that of layers loaded from the

pre-trained VGG16 weights. The learning rates of all layers will decrease after

every 10k iterations. A momentum of 0.9 and decay parameter of 0.0005 (on

weights and biases) are employed.365

4.2.4. Platform and device

Our experiments are implemented based on the deep learning platform Caffe

[13], and the GPU is the NVIDIA GTX Titan X, with 12 GB of memory.

In the following, we will demonstrate the feasibility of our method through

the experimental results on the two datasets.370

4.3. Localization results

Localizing the hand is indispensable, as the hand always occupies a lim-

ited space within an image, which results in a large background area. Most

conventional approaches need to localize the hand using a segmentation model,

and then perform the classification task. The performance of the latter step375

is immensely influenced by the former. In the worst case, the hand cannot be

segmented out at all, due to many uncontrollable factors.
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Figure 3: Examples of localization results. There are five columns in total, which represent

five different hand gestures we randomly chose in one subject from HUST-ASL. Each line

represents the results at different iterations, which are 200, 400, 2000, and 4000, respectively.

Green/red rectangles indicate the highest weighted proposals computed by our attention net-

work. Green represents good localization results, while red represents unsatisfactory results.

In our method, we design the attention network to make our network grad-

ually focus on the hand, thereby bypassing the segmentation process. More

importantly, the localization process is optimized for the classification task.380

Fig. 3 shows some examples of the localization procedure. Each window

corresponds to the proposal with the highest-weight computed by our attention

network. As the iteration increases, we can observe that the highest weighted

proposal can gradually enclose the hand very accurately in most cases.

Let us observe the movement of the attention of our network precisely. At385

iteration 200, all the different hands are out of our attention. Then, at iteration

400 our attention has already covered a relatively small part of the hand. As ex-

pected, our method can roughly localize the hands by iteration 2000, although

improvement is still needed. Satisfactorily, the hands have been precisely lo-

calized at iteration 4000, except for the last column. Unfortunately, part of390

the index and middle fingers of the performer are outside of the window in
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Table 2: Results on the NTU-HD dataset.

Method Segmentation Mean Accuracy(%)

Contour-Matching [24] ! 93.9

HOG [6] ! 93.1

H3DF [49] ! 95.1

Dominant Line [38] ! 91.1

DPM-BCF [8] ! 100.0

Our method % 98.5

the last picture. However, this is not a major cause for concern, because the

actual receptive field of the feature map is a little larger than the size of the

corresponding window. Therefore, despite the deviation in the localization, our

method may still classify the gesture effectively.395

We can also observe that the different hand gestures have different scales,

while our highest-weighted window can adapt to the scale of the hand gesture,

because our sliding window strategy is multi-scale when generating proposals.

We emphasize again here that this localization process is in a weakly super-

vised learning framework, because we do not provide any region-related labels400

for this task. We optimize it using only image-level annotations, in an end-to-

end manner.

4.4. Classification results

In this section, we compare our method with others on both the NTU-HD

and HUST-ASL datasets.405

4.4.1. Results on NTU-HD

As there are only 900 training samples in the NTU-HD dataset, we sim-

ply compare our method with some conventional approaches. As can be seen

in Table 2, the benchmark methods using contour-matching [24], conventional

hand-crafted descriptors such as HOG [6], H3DF [49], dominant line [38], and410
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DPM-BCF [8] are compared with our approach on the NTU-HD dataset. The

mean accuracies of these methods are taken from [8].

The NTU-HD dataset is not very challenging, and most of the conventional

methods listed above perform well on it. All of the results are higher than 93.0%,

and DPM-BCF [8] even achieves a 100.0% accuracy. The accuracy of our method415

is 98.5%, which outperforms the benchmark method by 4.6%, and is comparable

to the state-of-the-art performance. It is important to note that when organizing

the data, we find that there exists an apparent deviation between the color

images and depth cues, which may have a negative impact on the data. More

importantly, we find that most subjects can achieve an excellent performance,420

such as 100% or 99%, while subject 4 only achieved 94%, which affects our

mean accuracy by a large margin. By analyzing the errors, we observe that

this is because the fourth performer places his hand too close to the face when

performing some gestures, which causes confusion between some fingers and

parts of the face.425

We deem that NTU-HD dataset is too small, and it cannot adequately train

the network. As a result, the powerful performance of deep CNN cannot be

fully exerted. Hence, we place more significance on the HUST-ASL dataset.

4.4.2. Results on HUST-ASL

Regarding the challenging HUST-ASL dataset, we first provide experimen-430

tal evidence to demonstrate the effectiveness of the proposed attention network.

We try to train a model without computing the weight for each proposal, i.e., we

directly aggregate all the features of the proposals by the global-sum operation

after obtaining them. However, after training several times, we find that the

model cannot converge. In contrast, our proposed attentional model converges435

very well. We infer that our model aids in convergence, because it can gradually

suppress the weight of the noisy proposals (without hands) and pay special at-

tention to the most important part (hands) in order to obtain the discriminative

features of the entire image during training.

We further choose two baseline methods using the pre-trained CNN network440
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(a) (b) 

Figure 4: Examples of different inputs of the models. (a) RGB-D images which consists of

RGB images and depth images. (b) The depth images of the segmented hands using a depth

thresholding algorithm.

VGG16 [29], and fine-tune them using different input data, as shown in Fig. 4.

The first baseline method is called VGG16 R, which takes the raw images as

its input. The second baseline method is called VGG16 S, in which we first

segment the hand by setting the threshold to be 100 mm, as in [8], to obtain

the images and feed them into the network to fine-tune the parameters.445

Comparisons are presented in Table 3. As mentioned above, the HUST-ASL

dataset is very challenging, due to the intricacy of its collection. Although DPM-

BCF [8] can achieve a state-of-the-art performance with a 100% mean accuracy

on NTU-HD, it sharply declines to 58.0% when faced with the HUST-ASL

dataset. Moreover, the accuracy of the contour-matching is 10.8%, which seems450

to almost lose the capability of classifying the hand gestures. It is gratifying
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that our method outperforms these methods by a large margin. Concretely, the

result of our method is 73.4%, which is 62.6% higher than contour-matching [24],

39.2% higher than HOG [6], and 15.4% higher than BCF-DPM [8]. In addition,

there are clear improvements of 40.9% and 6.4%, respectively, compared to the455

two baseline methods. It is easy to identify that the weak performance of the

first baseline method is because it utilizes the features of the entire image with

a large background area, while our proposed method exploits the soft atten-

tion mechanism to determine the discriminative features. The second baseline

method VGG16 S exploits the power of CNNs, compared with hand-crafted460

features. It should be pointed out that it is unfair to compare this with our

method, because it requires segmented images as its input, and will lose efficacy

if the hand is not in front of any objects. However, our proposed method is still

superior, because we utilize the attention mechanism and treat the localization

and classification together.465

Our method is much faster than the conventional methods in terms of the

time consumption. The state-of-the-art method DPM-BCF [8] needs 2.128 sec-

onds, which is too slow for a practical system, while our method only needs 0.726

seconds. The reason why ours is slower than the baseline method VGG16 R is

that the structure of VGG16 R is very simple, being constructed by several470

convolutional and fully connected layers. It is not necessary to compute the

features of proposals using the RoI pooling layer, and that method does not

utilize the soft attention mechanism, which is the most important part of our

method. We deem that it is worth sacrificing some computational simplicity to

acquire a tremendous increase in accuracy, from 32.5% to 73.4%.475

4.4.3. Error analysis

By analyzing the types of errors on the HUST-ASL dataset, we find that

most mistakes result from similar gestures, e.g., the number 6 and the letter

W are almost the same, which is even difficult for human beings to distinguish.

Moreover, there are a group of hand gestures without any fingers held out, which480

can be interpreted as a fist. The confusion matrix is shown in Fig. 5. We note
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Table 3: Results on the HUST-ASL dataset.

Method Segmentation Accuracy(%) Test Time(s)

Contour-Matching [24] ! 10.8 4.001

HOG [6] ! 34.2 N/A

DPM-HOG [8] ! 36.6 N/A

DPM-BCF [8] ! 58.0 2.128

VGG16 R % 32.5 0.012

VGG16 S ! 67.0 0.013

Our method % 73.4 0.726

   0          a          e        m         n          o         s          t 
87.5    00.0    12.5    00.0    00.0    00.0    00.0    00.0  
00.0    93.6    0.00    00.0    00.0    6.25    00.0    00.0 
12.5    00.0    75.0    00.0    00.0    12.5    00.0    00.0 
00.0    0.00    00.0    56.3    37.5    00.0    00.0    6.25 
00.0    00.0    00.0    00.0    81.3    6.25    00.0    12.5 
12.5    18.6    6.25    00.0    00.0    62.5    00.0    00.0 
00.0    00.0    00.0    00.0    00.0    00.0    100.    00.0 
00.0    00.0    00.0    6.25    18.6    00.0    12.5    62.5 

Figure 5: Confusion matrix of hand gestures without any fingers held out.

that half of these cases are less than 80.0%, and only the letter A and the letter

S achieve a relatively satisfactory result.

Some possible reasons are listed below. 1) The color images and depth cues

are collected by two different kinds of cameras in a Microsoft Kinect, which485

means that there exists little offset when performing a fusion. 2) The location of

the hand is gradually learned by our network itself, with no related annotations.
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Figure 6: Accuracy curves of two subjects from HUST-ASL for three kinds of inputs, which

are color images, depth cues, and RGB-D images.

This process lacks a refinement mechanism, and may lead to unsatisfactory

results. 3) Some hand gestures are highly similar, and coupled with the angular

diversity in HUST-ASL. This may cause the occlusion of essential features of490

the gesture and arouse confusion.

4.4.4. Robustness to input

Our method can robustly deal with color images and depth cues. However,

the fusion of these types of information will lead to a better performance. Fig. 6

shows the evolving accuracy of two subjects chosen randomly from the HUST-495

ASL dataset as the number of iterations increases. We can observe that all the

curves representing color, depth, and RGB-D images gradually converge after

10000 iterations (about 16 epochs). Above all, the green curves with triangular

dots, representing RGB-D images, are clearly better than the others, owing to

the fusion of the information.500

4.4.5. Robustness to noise

As shown in Fig. 1(a), the most traditional framework of static hand-gesture

recognition must segment the hand out from the raw image by assuming that the
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Figure 7: Accuracy curves of subject three from HUST-ASL. Clean represents raw depth

inputs without deliberately added noise. Cabinet indicates that we add a cabinet in depth

maps, while S&P represents salt and pepper noise.

depth cues of the hand are always in front of the other parts. If this process fails,

then it would be impossible to correctly classify gestures. In real-environment505

applications, this requirement is unreasonable, because real scenes are always

complicated, and it is too demanding to ask users to put their hand in front of

anything when facing a camera.

In order to demonstrate that our method is robust without segmentation,

we introduce two different kinds of noise in depth maps, which can invalidate510

conventional methods based on segmentation. First, we simulate a circumstance

in which there exists a flat cabinet in the foremost position. Therefore, the

hand cannot be segmented out by setting a threshold, because the hand is

supposed to be in front of the background. Second, we introduce salt-and-

pepper noise that presents itself as sparsely occurring white and black pixels.515

It is obvious that the white pixels can be viewed as the nearest points when we

restrict the values in the depth map to [0,255], as shown in Eq. (1), which will

damage the segmentation process. However, these two kinds of noise will not
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influence our method significantly, because we do not need to localize the hand

by segmentation. The results of our method are shown in Fig. 7. We observe520

that the two curves representing Clean and Cabinet almost overlap, while salt-

and-pepper noise drops slightly (by about five percentage points). We conclude

that regardless of whether the hand is in front of the background, our method

has a considerable discriminative capability for hand gestures.

5. Conclusion525

In the course of this work, we have presented a novel static hand gesture

recognition method, based on an end-to-end trainable CNN framework with a

soft attention mechanism. Our network can automatically localize the hand

without any regional annotations, and achieve an excellent performance in clas-

sifying gestures. The demand of segmentation for performers’ hands to be in530

front of a specific background is removed. Using this approach, we achieve a

comparable mean accuracy result with the previous state-of-the-art method on

the NTU-HD dataset, and outperform it on the HUST-ASL dataset by a large

margin. Moreover, our method can robustly deal with color images and depth

cues. In particular, RGB-D images contribute to the improved performance.535

To the best of our knowledge, there is no previous work that exploits the dis-

criminative power of CNNs with an attention network for joint hand gesture

localization and recognition.

In future work, we will explore how to utilize this CNN framework based

on the attention mechanism for dynamic gesture recognition. In addition, we540

will try to aggregate more information into our network. For example, inferring

hand pose for more accurate hand gesture recognition.
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