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Abstract. Principal component analysis (PCA), as a key component in
statistical learning, has been adopted in a wide variety of applications
in computer vision and machine learning. From a different angle, weakly
supervised learning, more specifically multiple instance learning (MIL),
allows fine-grained information to be exploited from coarsely-grained la-
bel information. In this paper, we propose an algorithm using the robust
PCA (RPCA) [1] in a iterative way to perform simultaneous common
object discovery and model learning under a one-class multiple instance
learning setting. We show the advantage of our method on common ob-
ject discovery and model learning, which needs no fine/coarse alignment
in the input data; in addition, it achieves comparable results with stan-
dard two-class MIL learning algorithms but our method is learning from
one-class data only.

1 Introduction

Principal component analysis (PCA) has been adopted in a wide variety of do-
mains [2], enjoying its simplicity and effectiveness. A robust principal component
analysis model (RPCA) [1] was recently proposed along the line of increasing-
ly popular sparsity and robust measures (e.g. the ℓ1 norm) [3]. Unlike the ℓ2
norm used in the standard PCA approach, RPCA encourages a low-rank part
in the data matrix while having the ℓ1 norm on the residual, allowing the ro-
bust handling of data corruption and missing entries. The general assumption
of PCA and RPCA though depends on well-aligned input data. However, this
requirement is often too strong, especially for data of high dimension, which
is particularly problematic in computer vision; for example, even well-studied
frontal faces are hard to be perfectly aligned due to their intrinsic ambiguity.
A so-called robust alignment by sparse and low-rank decomposition (RASL) al-
gorithm [4] was very recently developed based on RPCA to deal with the local
transformation/alignment. However, RASL only works on image data with s-
mall deformations; it is hard to apply RASL in more general cases without high
quality initializations.

⋆ This work was done while the author was an intern in Microsoft Research Asia.
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From a different angle, weakly supervised learning, more specifically multi-
ple instance learning (MIL) [5–8], allows fine-grained information to be exploited
from coarsely-grained label supervision. In MIL, a training set consists of many
bags (images in our case); each bag consists of a number of instances (patches
in our case); only bag-level labels are given in training; the instance-level la-
bels are therefore unknown in the training stage; the training algorithm then
automatically explores instance-level and bag-level models to best fit the giv-
en bag labels. One promising aspect of MIL is that it allows for the automatic
model learning and instance-level label prediction at the same time. In the end,
a discriminative classifier is learned with the simultaneous label predictions on
the instances. Thus, MIL seems to be on the complementary side of PCA and
RPCA in removing the restrictions on having well-aligned input data. However,
existing MIL methods are mostly focused on learning discriminative models re-
quiring both the positive and negative data; essentially, the instance–level labels
for the negative bags are known to us since we assume the presence of positive
instances only in the positive bags. Here, we assume no given negative bags and
we want to learn a PCA-like generative model for the instance-level data of in-
terest; this represents many practical situations which are hard to be handled
by the existing MIL methods.

Another recent active research area in computer vision is unsupervised/weakly-
supervised object discovery [8–11]. However, the existing approaches either sep-
arate the task of object discovery from model learning or are formulated in a
standard MIL setting. Different the other approaches try to discovery multi-class
objects, e.g. [10], we focus on common object discovery. Thus, we requires all
images come from the same class; no negative/irrelevate images are needed.

In this paper, we propose a new algorithm using robust principal component
analysis (RPCA) to perform simultaneous object discovery and model learning
within a one-class multiple instance learning framework. In the experiments, we
show the advantage of our method on several applications to discover e.g. frontal
faces of large variations; it also achieves comparable results as the standard two-
class MIL learning algorithms with models learned from one-class data only.

2 Related Work

A robust principal component analysis (RPCA) was recently proposed in [1]
for video surveillance and face recognition; there has been also immediate work
adopting RPCA: further optimization approach was engaged to enhance the
results of RPCA [12]; in [4], robust alignment by sparse and low-rank decom-
position (RASL) was applied for face alignment. RASL aims to align multiple
images of an object class of interest to a canonical template and it assumes that
the degree of initial misalignment is not too large. In our problem, as stated
before, we allow for objects of unknown locations and scales with possibility in
severe occlusions.

Multiple instance learning (MIL) has recently received a lot of attentions.
The diverse density (DD) method [13] tackles MIL by finding regions in the
instance space with instances from many different positive bags and few instances
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from negative bags. In [6] learning algorithm of DD is refined using expectation
maximization (EM). MI-SVM and MILBoost are proposed in [14] and [8] in
which they train SVM and boosting classifier for instances respectively. Our
method only models the positive instances without the negative bags. We use a
EM-like algorithm to learn our generative model which is similar to [6]. Similar to
MI-SVM and MIL-Boost, our model maintains a latent selection of most positive
instance with a bag. However, our model is generative studying the instances of
interest directly and explicitly.

Object discovery is a recent active research area [15–20]; although their result-
s on benchmark datasets are promising, these existing methods are for specific
purposes built with complicated systems. Here, we focus on a simple but gen-
eral framework to discover objects and learn a PCA model from images known
to contain an object class of interest. Therefore, we only focus on rigid objects
which can be modeled by a PCA-like model. It alleviates the burden in having
negative bags, as required by many MIL approaches. Our method shows its par-
ticular robustness in handling occlusions and outliers. Other methods such as
‘co-segmentation’ method in [21] and the detecting and sketching the common
method in [22] do not require negative images for detection. However, they work
on two (or a few) images only with no explicit model learning in an integrated
framework.

3 Notation and Problem Formulation

In this section, we first give a brief introduction to the notation that will be used
throughout this paper. Then a detailed discussion about the formulation of our
problem will follow.

3.1 Notation

Suppose we are given N bags of instances. Each instance is represented by a d-
dimensional vector x ∈ R

d, and the k-th bag contains nk instances. We name all
the instances for the k-th bag as xk

1 , x
k
2 , . . . , x

k
nk
, and by putting them together we

get a representing matrix Xk =
[

xk
1 , x

k
2 , . . . , x

k
nk

]

∈ R
d×nk for each of the bags.

Each instance xk
i belongs to either the positive or the negative category. So we

label it with a binary variable zki ∈ {0, 1}, where zki = 1 indicates positiveness
and vice versa. Each bag is also associated with a binary label Zk based on the
labels of its instances: Zk =

∨nk

i=1 z
k
i . Intuitively speaking, a bag is positive if

and only if some of its instances is positive.
For convenience we define a new operator x ◦ z as follows:

x ◦ z =

{

x if z = 1
0 otherwise

Moreover, we generalize this operation to the bag level:

Xk ◦ Zk =
[

xk
1 ◦ zk1 , . . . , x

k
nk

◦ zknk

]

.

Following the convention, ‖ · ‖∗ stands for nuclear norm of a matrix(sum of
the singular values), and ‖ · ‖1 means l1-norm(sum of the magnitude of entries)
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for both vectors and matrices, ‖ · ‖0 counts the number of non-zero entries in a
vector and matrix. Moreover, [n] denotes the set of positive integers less than or
equal to n: {1, 2, . . . , n}.

3.2 One-Class Multiple Instance Learning via Robust Rank

Minimization

As has stated in Section 1, traditional settings of the Multiple Instance Learning
problem requires both positive bags and negative bags to be available. Also in
the training stage we must know exactly which bags are positive and which are
not. In this paper, we will study how to tackle this challenging problem under a
totally different setting. Basically it is assumed that we only have access to the
positive bags, without any touch on the rest negative bags. Specifically, in our
notation, ∀k ∈ [N ], we have Zk =

∨

zki = 1.
Hence, by throwing away negative bags, we also disable ourselves from seeking

discriminative information to separate positive and negative bags. Therefore, to
make the problem tangible, some special assumptions on the intrinsic structure
of positive and negative bags must be made. Below is the one of our choice.

Assumption 1: All the positive instances lie in a subspace Ω with ex-
tremely low dimensionality. Meanwhile, all the negative instances lies in
another high-dimensional subspace that is incoherent with Ω.

This assumption is in fact pretty reasonable in practice. For example, let us
examine the scenario of single common object discovery in images. If we align the
common objects together, they actually form a rank 1 subspace Ω. Background
patches and other uncommon objects naturally lie on another subspace which,
compared with Ω, is of much higher dimensionality, since they are by definition
uncommon between images.

Under this assumption, we have turned our task into the following form:

From each bag, pick out several positive instances, such that when we put
all these instances together as a whole into a matrix, that matrix is of
the lowest-rank possible.

Mathematically, we are trying to solve the following optimization.

min
zk

i
∈{0,1}

rank ([X1 ◦ Z1|X2 ◦ Z2| . . . |XN ◦ ZN ]) s.t. ∀k ∈ [N ], Zk =

nk
∨

i=1

zki = 1

(1)
For simplicity, we abbreviate ([X1 ◦ Z1|X2 ◦ Z2| . . . |XN ◦ ZN ]) into X ◦ Z ∈
Rd×(n1+...+nN ). Unfortunately, even though the ground-truth positive instances
may satisfy this strict low-rank assumption, the observed versions of them seldom
meet this requirement. One cause of this is due to quantization errors, changes
on illumination, noise and even occlusions. Apart from these, a small fraction of
the positive instances may turn out to be wrongly labeled, i.e., they come from
negative categories. To handle these in a uniform framework, we model all of the
corruption and outliers as sparse error added to the clean data. In other words,
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the observation X ◦ Z is a superposition of a low-rank component L and sparse
error matrix S:

X ◦ Z = L+ S

Here Ω = span(L). In the following sections of the paper, by a slight abuse of
notation, we will not distinguish between Ω and L. Thus (1) is reshaped into:

min
zk

i
∈0,1,L,S

rank(L)+λ0‖S‖0, s.t. X ◦Z = L+S, ∀k ∈ [N ], Zk =

nk
∨

i=1

zki = 1 (2)

λ0 here is a weight that balances the low-rankness of L and the sparsity of S.

4 Solution via Iterative Robust PCA

Notice that the highly combinatorial nature of (2) on binary variables zki ∈ {0, 1}
makes it difficult to tackle. So we borrow the idea of iterative minimization from
k-means to design an approximate solution. Specifically we would like to fix the
guess of instance labels Z and estimate the low-dimensional subspace L despite
corruption S. Then with the estimated L and S we update the instance labels Z
under certain strategy. We keep iterating the above two steps until convergence.
The algorithm is summarized in Algorithm 4.2.

4.1 Estimate the Low-rank Subspace by Robust Principal

Component Analysis

With Z fixed, the constraints of (2) is already linear with respect to L and S. So
we just need to address the non-convex function rank(·) and ‖·‖0. As proposed in
[1], replacing the intangible operator rank and ‖ · ‖0 with their convex surrogate
nuclear norm(‖·‖∗) and l1-norm(‖·‖1) actually will not affect the global optimal
solution under mild conditions. Based on this fact, we transform (2) into the
following form:

min
L,S

‖L‖∗ + λ‖S‖1, s.t. X ◦ Z = L+ S (3)

Notice that here λ = 1/
√

min (d,N) guarantees the global convergence to the de-
sired solution under reasonable assumptions [1]. This convex optimization prob-
lem exactly obeys the form of the Robust PCA and can be solved efficiently
utilizing the Augmented Lagrangian Multiplier method proposed in [12].

4.2 Update Instance Labels through l1 Regression

Once the low-rank subspace L is retrieved, to update the guess of labels of each
instance x, we need to test how well x fits into the subspace L. This can be
measured by the l1 regression error e of x over L , which is defined as follows:

e = min
w

‖x− Lw‖1 (4)

This regression can also get efficiently solved via [23]. Because each bag contains
at least one positive instance, we sort the instances xk

i by eki in an ascent order,
pick the best ρ instances to be positive and set the rest negative.
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Algorithm 1 Iterative RPCA for One-Class Multiple Instance Learning

Input: Positive bags X, initialized instance labels Z0, weight λ, parameter ρ.
Initialize: L = 0, Z = Z0.
While not converged Do

Step 1. Fix labels Z, update L via Robust PCA:
(L∗, S∗)← argminL,S ‖L‖∗ + λ‖S‖1, s.t. X ◦ Z = L+ S.

L← L∗

Step 2. Update the label based on L.
For each bag Xk

For each instance xk
i in Xk

Get the reconstruction error by l1-regression:
eki = minw ‖x

k
i − Lw‖1

EndFor

If ekj is within the ρ-th smallest among all eki , i ∈ [nk],
Set zkj = 1

Else

Set zkj = 0
EndIf

EndFor

EndWhile

Output: The learned low-dimensional subspace L and the instance labels Z.

4.3 Implementation Details

Construction of bags/instances In the common object discovery task, we run
saliency detection method in [24] on all the images to get a set of salient patches,
each with a score indicating the saliency degree. Each image is considered as a
bag, and the salient patches detected by saliency detector described using HoG
feature in [25] are considered as instances; number of instances is determined by
the output of [24].

Initialization of Labels Different strategies applies to different scenarios. For the
task of common object discovery in images, we choose the patch with the highest
saliency score to be positive and set the rest negative. For other tasks such as
multiple instance learning on existing online published datasets, the saliency
based method could not apply since we only have access to the well-prepared
instance points and bags. In this situation, we just randomly pick out a few
instances from each bag as positive. Then we turn to RANSAC, repeating the
estimation independently a few times and selecting out the best model. Often
the bags in these datasets do not contains many instances, thus this random
initialization strategy has a fairly large chance of success provided repeated
enough times.

Choice of λ in (3) Although λ = 1/
√

min (d,N) has already given (3) a lot of
nice properties, in practice we sometimes still need to tune it to further improve
the results. For instance, in single common object discovery in images, we lower λ
to 1/

√

2min (d,N) to make sure that rank(L) = 1. However, setting λ out of the
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range
[

1/2
√

min (d,N), 2/
√

min (d,N)
]

will not make the algorithm produce

anything meaningful at least empirically.

Choice of ρ For single common object discovery, since the positive subspace has
the property that rank(L) = 1, ρ = 1 is definitely the best choice. And typically
ρ = 1 will not make the algorithm go wrong in most of the situations. However, if
there are multiple objects that presents simultaneously in the same image or the
common object is represented by multiple instances that almost do not overlap,
then we have to set ρ to larger values. In the experiments on MIL benchmark
datasets, we don’t know number of positive instances in each bag, so we find the
best value of ρ by running cross validation on training data.

5 Experiments

In this part, we carry out the object discovery experiments on image datasets
and test our RPCA-based one-class MIL algorithm on standard MIL benchmark.
As the baseline of comparison, we would like to slightly change our method in
Algorithm 4.2 by replacing the Robust PCA component to classical PCA which
is not robust to corruptions but is optimal provided no outliers exist. By slight
abuse of notation, we denote the original algorithm using RPCA by RPCA-based
learning method (for short, RPCA method) and the modified version is named
PCA-based learning method (for short, PCA method). To compare PCA with
RPCA fairly, we set the number of projection dimension of PCA to the rank of
L in RPCA. In the following experiments, we will demonstrate the advantages
of RPCA method over the PCA method. We also compare RPCA method to
other related state-of-the-art methods. We do not aim at developing a system
to over-perform the state-of-the-art methods. Instead, we just want to highlight
that RPCA model truthfully reflect the existing outliers or corruptions that is
massively existing in the data of real world.

5.1 Occluded Face Discovery

We collect a face image dataset which contains 50 face images with many oc-
cluded faces at different sizes from web and the LFW image dataset [26]. Some
of the images in the dataset are shown in Fig. 1. As is shown there, faces are
occluded by different kinds of objects, ranging from sunglass, tennis, to hands
etc. Aside from this, expressions on faces and background of faces in images also
vary a lot.

Fig. 1. Some face images in the face image dataset.

In Fig. 2, we show the image patches for initialization (in the first column
among each group), face discovery results of PCA method (in the second column
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Fig. 2. Face discovery results: the first column among each group shows image patches
for initialization, the second column shows results of PCA method, the third column
shows results of RPCA method.

among each group) and face discovery results of RPCA method (in the third
among each column) for 33 of all 50 images. Fig. 2 shows that image patches used
for initialization are extremely challenging. Only part of the faces are present
in each patch. What’s worse is that even the present patches are not consistent
across different images. Notice that here we do not use the raw pixels but rather
extract some HoG features from each patch to represent every instance. As is
observed in Fig. 2: Faces discovered by PCA method are not well aligned, most
of which shift away from centers due to occlusion; while RPCA method align
these discovered faces pretty well. Quantitative results are in Table 1 which
also shows that RPCA can significantly outperform PCA in this occluded face
discovery experiment.

Our conclusion of this experiment is that RPCA method outperforms PCA
method on this occluded face discovery task due to the fact that RPCA in [1] is
designed to handle large sparse error on data, and in this case, the large sparse
error corresponds to the occlusion on face images.
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Fig. 3 visualizes the learned low-rank subspace in HoG feature space in every
iteration for both PCA method and RPCA method. The visualization method
is from [25]. It shows that RPCA method can iteratively get the sketch of face,
while PCA method can not converge to a good face model.

Table 1. The overlap percentages between ground-truth and initialized box, predicted
box by PCA, and predicted box by RPCA.

Initialization PCA RPCA

Overlap with ground-truth 40.94% 65.88% 79.28%

Fig. 3. Visualization of the PCA model (above) and the RPCA model (below) in every
iteration. For better viewing, please see the original pdf file.

5.2 Common Object Discovery on ETHZ Dataset

In this experiment, we use RPCA method and PCA method for object discov-
ery on the challenging ETHZ dataset [27] which is widely used for supervised
objection detection. We perform object discovery on the applelogos and bottles
classes separately. There are 40, 48 images in the applelogos and bottles classes
respectively. Images in the two classes have significant intra-class variation, scale
change, and illumination difference; some of images have very clustered back-
ground. Because HoG template cannot handle large deformation in the other
three classes in ETHZ dataset, we don’t work on them.

A discovered window is correct if it intersects with a groundtruth object by
more than half of their union (PASCAL criteria). Object discovery performance
is evaluated by 1) precision-recall curves, generated by varying the score thresh-
old, 2) average precision (AP), computed by averaging multiple precisions cor-
responding to different recalls at regular internals and 3) detection rate against
the number of false-positives averaged over all images with the class (FPPI).

We first compare RPCA method to PCA method, and the salient objec-
t detection (SD) method in [24]. Precision-recall curves and average precision
in Fig. 4 illustrate the performance of RPCA method, PCA method, and SD
method. Both RPCA method and PCA method outperform SD method signif-
icantly, and RPCA method works better then PCA method. We then compare
RPCA method to a supervised object detection method [28] in which half of the
images with bounding boxes in each class are used for training. Detection rates
at 0.3/0.4 FPPI of [28] and RPCA method are listed in Table 2. It illustrates
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Fig. 4. Precision-recall curves for RPCA method (in blue), PCA method (in green) and
SD method in [24] (in red) on ETHZ applelogos class (left) and bottles class (right).

Fig. 5. The most confident detection hypothesises given by SD method in [24] (in red)
and RPCA method (in blue), groundtruth objects are in yellow on ETHZ dataset.

that RPCA method is comparable to the supervised object detection method
[28] on applelogos and bottles classes. Fig. 5 shows the most confident detection
hypothesis given by SD method and RPCA method in some of images in the
dataset. As shown in this figure, using the objects in red boxes as initialization,
our RPCA method can iteratively find the true object locations marked in blue.
The salient object detection result on the other three classes of ETHZ dataset
are too bad, so we have not tested the performance of the proposed method on
the other three classes.

Table 2. Comparison of detection rates of the supervised object detection method [28]
and RPCA method at 0.3/0.4 FPPI on ETHZ applelogos class and bottles class.

classes applelogos bottles

Ferrari et al. [28] 0.777/0.832 0.798/0.816
RPCA 0.800/0.864 0.709/0.763

5.3 Classification on MIL Benchmark Dataset

Until now, we have demonstrated a lot about the power of Robust PCA method
for solving one class Multiple Instance Learning Problem without any informa-
tion about negative bags. In this experiment, we will show that utilizing the
learned model, with simple modification, our method can actually do the same
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two classes bag classification tasks. Moreover, we will show that indeed this sim-
ple modification would grant our algorithm with similar performance compared
with the popular discriminative MIL method, e.g., the mi-SVM method.

Specifically, suppose we have learned the low-rank subspace L for positive
instances from the given positive training data. But after this we now have
additional access to some other negative bags. Utilizing the new negative bags
and L, we can train a SVM classifier as follows: Upon each bag Xk, no matter
its positive or negative, for each instance xk

i in this bag, we build a histogram
hk to show the distribution of the l1 reconstruction error eki , and use hk as the
final representation for Xk. Then we train a simple linear SVM classifier using
hk as training bags to accomplish the bag classification task. To compare the
proposed RPCA method with standard two-class MIL learning algorithms, we
evaluate RPCA method on four benchmark datasets [14] that are very popularly
in studies of multiple instance learning, including Musk1, Elephant, Fox and
Tiger. For each dataset, first we use the random initialization strategy described
in the previous sections to set up the algorithm. Then RPCA model and PCA
model are learned only using positive bags according to Algorithm 4.2. Then
classifiers are trained based on all these. Following the standard verification
convention, experiments are performed in a 10-fold cross-validation manner and
per-fold average test classification performance is reported in Table 3.

Table 3. Results on MIL benchmark datasets. Bag classification accuracies (%) of
RPCA method and PCA method on four MIL benchmark datasets compared to the
state-of-the-art. The results of the upper part are taken from respective papers.

Datasets Musk1 Elephant Fox Tiger

MI-SVM [14] 77.9 81.4 59.4 84.0
mi-SVM [14] 87.4 82.0 58.2 78.9
EM-DD [6] 84.8 78.3 56.1 72.1
PPMM Kernel [29] 95.6 82.4 60.3 80.2
MIGraph [30] 90.0±3.8 85.1±2.8 61.2±1.7 81.9±1.5
miGraph [30] 88.9±3.3 86.8±0.7 61.6±2.8 86.0±1.6
MI-CRF [7] 87.0 85.0 65.0 79.5

PCA 85.7±1.4 73.0±1.5 60.8±1.4 75.8±2.0
RPCA 82.9±2.8 78.3±1.1 61.0±1.4 76.9±0.9

In Table 3, we have compared RPCA method to PCA method, some popular
MIL methods and the state-of-the-art methods, such as [14, 6, 29, 30, 7] are also
listed. RPCA method outperforms PCA method in 3 of the 4 datasets (mark
in red color), which shows that RPCA method is more practical than PCA
method in general data. Only positive bags are used for learning the model
in our proposed RPCA method. However, the performance of RPCA method is
comparable to discriminative mi-SVM method in [14]. This good property makes
the proposed RPCA method can be more widely used, such as unsupervised
object detection without any negative training images in section 5.1. In the
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state-of-the-art face detection approach in [31], it need about 10000 non-face
images for training.

6 Conclusion and Future Work

In this paper we proposed a new one-class multiple instance learning method
based on Robust PCA [1] without negative bags. The algorithm achieves compa-
rable robustness to both corruption on data and wrongly categorized instances,
thus can work in some situations that PCA doesn’t work well. We also show
that with slight modification our method can achieve comparable performance
to some popular methods that leverage discriminative information. In the fu-
ture, we will develop composition model for object representation, rather than
the current simple HoG template, to discover more complex objects in images.

Acknowledgement: The work was supported by NSF CAREER award IIS-0844566,
NSF award IIS-1216528, and by the National Natural Science Foundation of Chi-
na (NSFC) Grants 60903096, 61173120 and 61222308.
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