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Abstract

Shape representation is a fundamental problem in computer vision. Current approaches

to shape representation mainly focus on designing low-level shape descriptors which are

robust to rotation, scaling and deformation of shapes. In this paper, we focus on mid-level

modeling of shape representation. We develop a new shape representation called Bag of

Contour Fragments (BCF) inspired by classical Bag of Words (BoW) model. In BCF, a

shape is decomposed into contour fragments each of which is then individually described

using a shape descriptor, e.g., the Shape Context descriptor, and encoded into a shape code.

Finally, a compact shape representation is built by pooling shape codes in the shape. Shape

classification with BCF only requires an efficient linear SVM classifier. In our experiments,

we fully study the characteristics of BCF, show that BCF achieves the state-of-the-art

performance on several well-known shape benchmarks, and can be applied to real image

classification problem.
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1. Introduction

Shape is an intrinsic feature for image understanding, which is stable to illumination

and variations in object color and texture. Because of these advantages, shape is widely
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considered for object recognition. In particular, with the recent advance in contour detec-

tion proposed by Arbelaez et al. in [1], shape based object recognition in natural image is

becoming more practical and attracts more attention in computer vision community. Main

challenges in shape based object recognition include deformation, occlusion and viewpoint

variation of objects. Various shape descriptors have been proposed to address these chal-

lenges, eg., [2, 3, 4, 5]. Shape based object recognition is usually considered as a classification

problem. Given a set of training shapes and category label of each training shape, we need

to determine which category a testing shape belongs to. Traditional shape classification

methods are usually based on matching shape descriptors from two different shapes: for

every training shape, we find correspondences between its shape descriptors and the shape

descriptors in the testing shape using matching algorithms, such as Hungarian algorithm, dy-

namic programming algorithm; then we compute matching costs according to the matching

results; finally, we rank training shapes based on the matching costs and classify the testing

shape using the nearest neighbor (NN) classifier. This exemplar-based shape classification

strategy has been widely used, for example, in [2, 3, 6]. However, it has its own limitations.

With few training samples, it is difficult to capture the large intra-class variation using these

algorithms. For large training samples, it is extremely time consuming to perform shape

matching one-by-one.

Different from exemplar-based shape matching, in this paper, we propose a compact

shape representation and handle the large intra-class variation by discriminative learning.

Inspired by the huge progress in image classification and representation with Bag-of-Words

(BoW) [7, 8], we decompose shape into contour fragments and quantize the contour frag-

ments into shape codes. The contour fragments under different scales contain both local

and global shape information which can be encoded utilizing coding strategies for local de-

scriptors [9, 10]. Then, a statistical histogram of shape codes is used to represent each shape

and similarity of shapes can be directly computed from these histograms. Matching shapes

based on this new shape representation does not explicitly give correspondences between

contour fragments. But using a classifier for shape classification is much more efficient than

using the typical matching algorithms such as Hungarian, thin plate spline (TPS), dynamic
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Figure 1: Pipeline of building shape representation using BCF. (a) shows contour of a shape; (b) shows

critical points detected using DCE method; (c) shows some contour fragments in blue color; (d) shows that

we use shape context [2] to describe each contour fragment; (e) shows shape codes; (f) shows we use 1×1,

2×2, and 4×4 spatial pyramid for max-pooling; (g) shows the histogram for shape representation.

programming, dynamic time warping, etc. In fact, BoW model is a natural solution for find-

ing correspondences between two sets of features and can be used efficiently for recognition

tasks. However, it has seldom been successfully applied to shape analysis, since the popular

image descriptors such as SIFT [11] and LBP [12] are mainly designed for describing the local

texture/appearance variations. These image features are not good at capturing the intrinsic

structure in shape. Toward this end, we directly work on shape contour by decomposing it

into contour fragments. We name our method Bag of Contour Fragments (BCF), which can

not only provide a compact and informative representation, but also achieve state-of-the-art

classification performance on several popular shape benchmarks.

Pipeline of building shape representation in BCF is shown in Fig. 1. The outer contour

of each shape is decomposed into salient contour fragments using a well-known contour de-

composition method named discrete contour evolution (DCE) [13]. Each contour fragment

is then described by collecting the shape context features [2] on its reference points, and

encoded into shape codes. Finaly, the shape codes are pooled into a compact image repre-

sentation with spatial pyramid. We utilize the current advances in image classification, such

as local-constrained linear coding (LLC) [9] for feature coding and spatial pyramid matching
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(SPM) [14] in our BCF shape classification framework. Both LLC and SPM are seldom used

in shape analysis. LLC utilizes the locality constraints and encodes each descriptor with

its local-coordinate system in a codebook. In practice, it first performs k-nearest-neighbor

search to find local-coordinates for feature to be encoded, and then solves a constrained

least square fitting problem on the local-coordinates. The state-of-the-art performance on

PASCAL VOC [15] image classification has shown effectiveness of LLC. SPM is a simple and

computationally efficient extension of the orderless BoW model for image representation. It

works by partitioning the image into increasingly fine sub-regions and computing histograms

of local features found inside each sub-region. Histograms of different sub-regions are con-

catenated as final image representation. SPM can capture the spatial information in contour

fragments which are useful for shape recognition. BCF naturally utilizes LLC and SPM to

improve the accuracy of shape classification.

One of the major difficulties involved in shape classification for many shape-matching

based algorithms is to directly match two shapes with large deformation since shapes are

only partially similar to each other. BCF can easily solve this problem caused by large

shape deformation, and is good at classifying shapes with partial similarity. As each shape

contour is divided into contour fragments in BCF, the contour fragments contain partial

shape information. After coding, a discriminative classifier such as SVM or Adaboost can

be used to select the representative and informative contour parts for each shape category.

Fig 4 shows some contour fragments selected by linear SVM in four shape categories in our

experiments. We can see that even though contour fragments are parts of the shapes, they

are very informative for recognizing shape category. Thus, BCF is able to deal with partial

occlusion in shape, especially, in the edge map extracted from real image. Besides, we find

that BCF is also robust to noisy contour in our experiments.

In summary, the proposed BCF has several good properties:

1. It provides a very compact shape representation which is a single vector rather than

a set of feature vectors used in many other methods.

2. It precisely preserves information of individual shape contour via LLC and spatial
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layout of contour fragments in one shape via SPM.

3. For shape classification it avoids pairwise matching between local shape descriptors

and significantly reduces the time cost.

4. It is robust to the shapes with occlusions or parts missing, and can be easily applied

to real image classification.

The rest of the paper is organized as follows. We review the related works in Section 2.

Then, we introduce the details of our shape representation with BCF in Section 3, including

extracting, encoding and pooling contour fragments etc. We evaluate the proposed method

on several popular shape benchmarks, illustrate good properties of BCF in applications,

and demonstrate its effectiveness in shape classification in various of datasets in Section 4.

Finally, we conclude this paper in Section 5.

2. Related Work

Here, we briefly review the recent progress in shape classification. Sun and Super [16]

proposed a shape classification framework for recognizing contour shapes using class contour

segments as input features with Bayesian classifier. Bai et al. [6] adopted contour segments

and skeleton paths as the input features for shape classification with a Gaussian mixture

model. Daliri and Torre [17, 18]transformed the contour points into a symbol representation,

and then used the edit distance between pair of strings are used for classification with a

kernel support vector machine. Wang et al. [19] proposed a tree-union [20] representation

as the prototype for each shape category, and performed shape classification is determined

by the shape similarity between a test shape and each prototype. Edem and Tari [21] also

used a skeletal tree model to represent the prototype of each category, and then used the

edit distance between a given shape and each prototype is used as the input feature for a

linear SVM. Thus, each prototype in [21] can be considered as a shape codebook. Shape

classification by skeleton matching has been studied by [22, 23, 24, 25].

Various shape descriptors have been proposed for shape matching and recognition. There

are some region-based methods, such as Zernike moments [26] and generic Fourier descriptor
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[27]. Other methods based on contour include curvature scale space (CSS) [4], multi-scale

convexity concavity (MCC) [28], triangle area representation (TAR) [5], hierarchical pro-

crustes matching (HPM) [29], shape-tree [30], contour flexibility [31], shape context (SC)

[2], inner-distance shape context (IDSC) [3] and so on. In this paper, we only use shape

context to describe contour fragments in BCF. Generally speaking, most of these shape

descriptors can be adopted as low-level representation in BCF, since each contour fragment

can be considered as a shape. We use discrete contour evolution (DCE) [13] for decomposing

shape into contour fragments. Other recent shape evolution methods, e.g., [32], can also be

adopted in BCF.

Our BCF approach can be considered as a two-layer feature learning framework on shape

contours. In the first layer, contour fragment features are encoded into shape codes using

local-constrained linear coding (LLC), which is first proposed in [9] for encoding SIFT [11]

features in real images. Other feature coding methods include fisher kernel (FK) [10] and

kernel codebook encoding (KCB) [33]; we choose LLC for its high efficiency. In the second

layer, we use spatial pyramid matching (SPM) for pooling the shape codes. Theory of

SPM is given in [34]. SPM is first proposed by Lazebnik et al. for image classification in

[14]. Recently deep learning is very popular for feature learning and obtains good results

on large-scale image classification [35]. Different from BCF, deep learning approaches have

more layers; in [36], for example, a shape model based on deep Boltzmann machine called

shape Boltzmann machine (SBM) is proposed; SBM directly works on raw shape pixels

and learns probability distributions over object shapes, which is good at shape completion

task but hardly works on the challenging Mpeg-7 shape dataset [37] for shape classification.

However, BCF learns shape representation over shape contours, which is more robust to

deformation of shape and more suitable for shape recognition. Textures feature and BoW

model are directly used for shape classification in [38]. BCF utilizes contour fragment as

shape feature, which is obviously superior to [38].

The strategy of partitioning shape into contour parts for shape recognition has been

adopted by [16, 39, 6]. Unlike these previous works where contour parts are put in an

orderless set as shape representation, BCF explores the spatial layout of contour parts and
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builds a compact shape representation via feature coding and pooling.

3. Bag of Contour Fragments

In this section, given a shape S, we show how to build BCF shape representation f(S)

for S and use f(S) for shape classification step by step.

3.1. Contour fragments

Contour fragments have been validated as powerful shape features in several previous

approaches [16, 6], since they contain both local and global shape information. We adopt

contour fragments as basic shape features for learning a shape codebook and building our

shape representation. An object boundary can be decomposed into contour fragments in

different ways, such as dense sampling and sampling based on curvature like in [16]. Here,

we use a more robust technique named discrete contour evolution (DCE) [13] for partitioning

the whole object contour into meaningful contour fragments. Let S(t) = (x(t), y(t)) be the

outer contour of a shape S parameterized by t ∈ [0, 1]. We first apply the DCE to obtain a

simplified polygon on S with vertices denoted as

−→u = (u1, . . . , uT ),

where T denotes number of vertices, which is not previously known but can be automatically

computed given a threshold parameter τ . −→u includes critical points on S. Fig. 1(b) shows

the critical points extracted by DCE for an input contour S.

Given an object contour S, its contour fragments set is denoted by C(S), which are the

segments between every pair of critical points (ui, uj). Let cij denote the contour fragment

between ui and uj, we have

C(S) = {cij = (ui, uj), i 6= j, i, j ∈ [1, . . . , T ]}. (1)

Note that ui and uj do not have to be adjacent to each other. Also,

S = cij ∪ cji, (2)
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Figure 2: Three exemplar contour fragments containing short-range (left), middle-range (middle) and long-

range (right) information in shape.

since one represents a fragment and the other is its counterpart. C(S) contains very rich

information in shape S, since contour fragments between all pairs of critical points are ex-

tracted. All the contour fragments extracted from a shape contain multi-scale information,

which can be summarized as short-range, middle-range and long-range information as shown

in Fig. 2. Therefore, contour fragments are totally different from local descriptors (SIFT,

HOG, or LBP, etc.) for image classification, since the local descriptors only contain infor-

mation of local patches in image. In the rest of this section, we will show how we describe

contour fragments and how we select informative contour fragments for shape recognition.

For each contour fragment cij, we describe it using shape context xij ∈ Rd×1 where d is

the dimension of the feature vector of cij. As illustrated in Fig. 3, xij is computed as follows:

we sample 5 reference points on cij from ui to uj equidistantly, and then compute 5 shape

context histograms based on the reference points individually. Shape context descriptor for

cij is a concatenation of the 5 shape context histograms.

3.2. Encoding of contour fragments

Encoding contour fragment features xij is to map feature vectors of contour fragments

into a new space B spanned by a shape codebook B; in this new space, contour fragments

are represented by shape codes wij.

Many codebook learning methods have been proposed for image representation, including

unsupervised methods [9] and supervised method [40, 41] etc. In this paper, we choose k-

means [42] as the codebook learning since it is a simple yet stable one. A set of training

shape features is randomly selected from all the contour fragment features. We then run

k-means algorithm on the selected shape features for clustering. The clustering centers are
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iu ju

Figure 3: Shape context feature for contour fragment cij . Note that circles in this figure are plotted for

showing the positions to compute shape context which do not stand for the area in which to compute shape

context.

used as shape codebook B = [b1, . . . ,bM ] ∈ Rd×M , where each column is a clustering center.

So the obtained M clustering centers can be approximately considered as M prototypes for

describing the whole shape space.

To compute shape codes xij, a traditional way is to do vector quantization (VQ) like

in [14]. VQ only assigns a shape feature xij to its nearest neighbor in shape codebook B;

it is fast but its quantization error is large. Local-constraint linear coding (LLC) is a very

good choice for feature coding proposed in [9], as it is both fast and effective. The LLC

method is inspired by the theory of local linear embedding (LLE) [43]. To represent xij in

the space B spanned by shape codebook B, LLC uses k nearest neighbours in B as local

bases for xij to form a local coordinate system. The k nearest neighbors of xij are denoted

as Bπij ∈ Rd×k where πij is a set containing the indexes of the k nearest neighbors in B,

denoted as πij = {π1
ij . . . π

k
ij}. Bπij is a matrix consisting of the π1

ij . . . π
k
ij-th columns of

B. Following the assumption in LLE, we expect that xij and its nearest neighbors lie on

or close to a local linear patch of the manifold. The local geometry of xij and Bπij can

be characterized by linear coefficients obtained through reconstructing xij from Bπij . The

coefficients wπij ∈ Rk×1 can be obtained by solving the following minimization problem

min
wπij

‖xij −Bπijwπij‖2 s.t. 1Twπij = 1, (3)

where weight vector wπij summarizes the contributions of local bases to xij’s reconstruction,
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which is required to be summed to 1. The minimization problem in (3) is a small-scale least

square problem, and its time complexity is O(k2). In our experiments, we always set the

value of k as 5. We denote code of xij as wij ∈ Rd×1: values of the π1
ij . . . π

k
ij-th entries of

wij are equal to wπij and the rest of entries in wij are set to zero.

3.3. Max-pooling with spatial pyramid

In this subsection, we build a compact shape representation based on statistics of shape

codes wij. In addition, we utilize spatial pyramid matching (SPM) [14] method to add

spatial layout information of contour fragments into our shape representation.

The process of building shape representation is given as follows: First, we divide shape

into different regions. Specifically, shape is divided into 1×1, 2×2 and 4×4 regions, as shown

in Fig. 1(f); in total, there are 21 regions. Then for each region Regionr, r ∈ [1, . . . , 21], we

do max-pooling. Let wz denotes an encoded contour fragment in the position of z in shape

(position of a contour fragment is defined as its the median point). Max-pooling works as

follows:

f(S, r) = max(wz|z ∈ Regionr), (4)

where the max function works in row-wise, returns a feature vector of Regionr, f(S, r),

with the same size as wij. For each codeword, we take the max value of all shape codes

in a region for shape representation, so we called this method as max-pooling. Max-

pooling procedure is well established by biophysical evidence in visual cortex (V1) [44]. Its

correctness empirically verified by many algorithms applied into image classification, such

as [9, 45, 10] etc. It also works well with linear classifiers. Final representation f(S) for

shape S is a concatenation of the feature vectors for all regions.

f(S) = [f(S, 1)T , . . . , f(S, 21)T ]T . (5)

It is easy to know the dimension of f(S) is 21×M .

SPM can encode spatial information among the short-range contour fragments in a

coarse-to-fine way. We train a classifier on training shape to decide whether the classifi-

er fires on a coarse level (1 × 1 region) or a fine level (2 × 2 and 4 × 4 regions). More
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specifically, if the training shapes are well aligned, it contains similar contour fragments in

each small grid, so the classifier will fire on a fine level. On the other hand, if the training

shapes are rotated in different directions, it contains different contour fragments in a single

small grid; but all contour fragments are contained in the coarse level; so the classifier will

fire on a coarse level. Thus, SPM is a very flexible strategy.

3.4. Shape classification using linear SVM

Since our shape representation is a simple vector, we directly adopt SVM for shape

classification. For multi-class SVM, we use the formulation proposed by Crammer and

Singer in [46]. Given a set of training shapes {fi} with labels {yi ∈ [1, . . . , N ]} where N is

the number of shape classes. Crammer and Singer’s multi-class SVM can be used to solve

the following optimization problem:

min
ω1,...,ωN

N∑
n=1

‖ ωn ‖2 +λ
∑
i

max(0, 1 + ωTrifi − ω
T
yi
fi), (6)

where ri = arg maxn∈[1,...,N ],n6=yiω
T
n fi. In Eq. (6), the left part is a regularization term; the

right part is multi-class hinge-loss; parameter λ controls the relative weight of the regular-

ization term. To solve (6), we use the off-shelf SVM solver, LibLinear developed by Lin et

al. [47]. In the testing stage, shape label is predicted by

ŷ = arg maxn∈[1,...,N ]ω
T
n f . (7)

Learning with SVM is a process of selecting support vectors, during which certain contour

fragments important for recognition are selected in every shape. In Fig. 4, we show some

examples. For a shape, we find top 20 values in all fi ·ωyi . We then find the contour fragments

that contribute to the top 20 entries in fi; in other words, we find the contour fragments

which have maximal code value in the top 20 entries in fi. As shown in Fig. 4, the selected

contour fragments by coding (with LLC), max-pooling and SVM are meaningful. There are

a few trivial fragments in top 20, such as, the 17th and 19th in (c), because the values of

their codes are large as it is easier for them to be precisely encoded. But their corresponding

value in ωyi is small.
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Figure 4: Top 20 contour fragments which contribute the most for recognition in a butterfly shape (a), an

elephant shape (b), a camel shape (c), and a bat shape (d).
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Time consuming kernels, such as the RBF kernel and intersection kernel etc., can further

improve the shape classification performance. But for faster speed, we use linear SVM.

4. Experiments

In this section we test our method for shape classification on a variety of shape datasets

and compare results of our method with the state-of-the-art shape classification approaches,

available for those datasets in the literature. We also study the robustness of our method.

First of all, we give implementation details as following. 1

4.1. Implementation details

Extracting contour fragments. We use DCE to extract about 400 contour fragments per

shape; max curvature τ of DCE is set to 0.5. When computing shape context for contour

fragment, we have 5 reference points given in Section 3.1, and set number of bins of shape

context to be 60 (10 for dividing angle space and 6 for dividing radius space). Thus, di-

mension of our shape context descriptor for a contour fragment is 300. Besides, positions

of contour fragments in shape are also recorded which are used for pooling with spatial

pyramid.

Learning shape codebook. Standard k-means clustering is adopted for training the codebook.

The number of the contour segments collected from the dataset could be enormous. As a

result, the codebook training can be very time consuming and computationally expensive.

Therefore, we randomly select 1000 images and for each image only 300 shape context

features are picked for training the codebook. The number of clustering centers is set to

1500 if it is not specified. In addition, we will study the performance of BCF with different

number of clustering centers.

Coding, pooling and classification. In the coding scheme, the approximated LLC with 5

nearest neighbors is adopted. When pooling, a shape is divided into 1×1, 2×2, and 4×4,

1MATLAB code of these experiments is available at https://bitbucket.org/xinggangw/bcf
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in total 21 regions. The final feature vector for shape representation is normalized by its `2

norm. For shape classification, a fast off-shelf linear SVM toolbox, LibLinear [48], is used.

Datesets. We evaluate our BCF method on shape classification benchmark dataset which is

the MPEG-7 dataset [37], and use BCF for 70 classes animal classification on Animal dataset

[6], for leaf classification on Swedish Leaf dataset [3], and for multi-view object classification

on ETH-80 image dataset [49]. In the rest of this section, we give experimental results and

analysis.

4.2. MPEG-7 dataset

The MPEG-7 dataset is widely used for shape analysis in the field of computer vision. It

has 1400 silhouette images divided into 70 classes with high shape variability. Each class has

20 different shapes (see Fig. 5 for some typical images). We use two strategies for evaluating

shape classification performance: (1) half training, we randomly select 10 shapes in each class

for training and use the rest shapes for testing in each round; this procedure is repeated for

10 times; average classification accuracy and standard derivation of classification accuracies

are reported; (2) leave-one-out, for each shape, we use all shapes except the current one for

training and use the current one for testing; average classification accuracy is reported.

BCF is compared with other shape classification methods in Table 1. In [16, 6] contour

fragments are used for shape classification. BCF outperforms [16, 6] by over 6% when using

half of shapes for training. The superior performance may be attributed to the fact that

the discriminative learning via SVM in our approach can maximize the margins between

different shape categories and find very informative contour fragments for each category. In

[16, 6], however, all contour fragments have equal weights. Preconditions of discriminative

learning with SVM are that BCF provides a compact shape representation and LLC precisely

preserves information of contour fragment. In [50, 17, 18], shape is described based on the

symbolic representation. BCF achieves the state-of-the-art performance when using leave

one out for testing which is the same as the result in the most recent work in [18].
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Figure 5: Typical shapes from the Mpeg-7 dataset [37]. One image from each class.

Table 1: Classification accuracy comparison on Mpeg-7 dataset [37]

Classification accuracy

Algorithm Half training Leave one out

Class segment set [16] 90.9% 97.93%

Contour segments [6] 91.1% -

Skeleton paths [6] 86.7% -

ICS [6] 96.6% -

Polygonal multi-resolution [51] - 97.57%

String of symbols [50] - 97.36%

Robust symbolic [17] - 98.57%

Kernel-edit distance [18] - 98.93%

BCF 97.16±0.79% 98.93%
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Figure 6: Some shapes form Animal dataset [6]. The first, second and last row shows 8 shapes from Cat

(1st row), Monkey (2nd row) and Spider (3rd row) class from this dataset respectively.

Table 2: Classification accuracy comparison on Animal dataset [6]

Algorithm Classification accuracy

Class segment set [16] 69.7%

IDSC [3] 73.6%

Bag of SIFT [38] 74.9%

Contour segments [6] 71.7%

Skeleton paths [6] 67.9%

ICS [6] 78.4%

BCF 83.40±1.30%

4.3. Animal dataset

The animal dataset was introduced in [6], it contains 2000 shapes describing 20 kinds of

animals, including horse, rabbit, monkey, etc. Each category have 100 animals images. Some

of shapes form the two most difficult classes (Cat and Monkey) and the easiest class (Spider)

in this dataset are shown in Fig. 6. The dataset has much more intra-class variability since

the same kind of animals may have various gestures. We use 50 shapes randomly selected

per class for training and the rest of shapes for testing. We run experiments for 10 times

and average classification accuracy of our method is compared with that of other methods

in Table 2.

As shown in Table 2, the proposed BCF method obtains a classification accuracy of
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Table 3: Detailed classification accuracy on Animal dataset [6]

Method Bird Butterfly Cat Cow Crocodile Deer Dog Dolphin Duck Elephant

CS[6] 76% 89% 39% 70% 54% 69% 69% 87% 83% 95%

ICS[6] 76% 93% 48% 80% 66% 79% 75% 89% 89% 97%

BCF 87.6% 92.2% 73.8% 77.4% 76.8% 90.4% 82.6% 89.0% 87.0% 95.2%

Method Fish Fly-bird Hen Horse Leopard Monkey Rabbit Rat Spider Tortoise

CS[6] 70% 57% 89% 96% 56% 21% 81% 52% 98% 81%

ICS[6] 74% 65% 94% 97% 65% 33% 87% 84% 100% 90%

BCF 79.8% 72.0% 94.2% 95.4% 66.4% 58.4% 85.8% 70.6% 99.2% 93.6%

83.40% which significantly outperforms the classical shape descriptor, inner distance shape

context [3], and the previous state-of-the-art method [6] which integrates contour segments

and skeleton paths for shape classification. Average classification accuracy for each of the 20

classes in Animal dataset are reported in Table 3. BCF dramatically improves classification

accuracy in Cat and Monkey classes. This shows that BCF can capture the intra-class partial

similarity within the highly deformed objects from Animal dataset. Bag of SIFT method

[38] directly uses texture feature for shape classification, obtains a classification accuracy

of 74.9% which is much lower than BCF’s accuracy. This shows that our contour fragment

feature is more suitable for shape classification than SIFT.

4.4. Swedish Leaf dataset

In this subsection, we use BCF for leaf image recognition on the Swedish Leaf Dataset

[52]. The Swedish leaf dataset comes from a leaf classification project at Linköping University

and Swedish Museum of Natural History. The dataset contains isolated leaves from 15

different Swedish tree species, with 75 leaves per species. Some typical binary shapes of leaf

images are shown in Fig. 7. Note that some species are indistinguishable to the untrained

eye, e.g. the 1st, 3rd, 9th, 11th and 15th species. We follow the experimental setting in

[3]. In each species, 25 shapes are randomly selected for training and the rest of shapes

are used for testing. We run training and testing for 10 times and report the average and

standard deviation of the classification accuracies. We compare classification accuracy of

our method with other pure shape-based recognition methods in Table 4. The methods
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Figure 7: Typical shape of images from the Swedish leaf dataset [52]. One image from each species.

Table 4: Classification accuracy comparison on Swedish leaf dataset [52].

Algorithm Classification accuracy

Moment+Area+Curvature [52] 82%

Fourier [3] 89.6%

SC+DP [3] 88.12%

IDSC+DP [3] 94.13%

MDM [53] 93.60%

IDSC+Morphological strategy [54] 94.80%

Robust symbolic [17] 95.47%

Shape-tree [30] 96.28%

BCF 96.56±0.67%

compared include a preliminary work [52] using some simple features like moments, area

and curvature etc, the Fourier descriptor, the shape context with dynamic programming

(SC+DP), the inner distance shape context with dynamic programming (IDSC+DP), the

multi-scale matrix distance matrix [53], the morphological strategy method in [54], a robust

symbolic representation method [17] and the shape-tree method in [30]. BCF obtains the

state-of-the-art performance among these methods.

4.5. ETH-80 dateset

The ETH-80 datastet [49] contains 80 3-D high resolution objects (Fig. 8) from eight

categories. For each object, there are 41 color images from different viewpoints. So the

dataset contains 3280 images in total. Segmentation masks of all images are provided to

evaluate shape-based object recognition approaches with this dataset. The test mode of

this dataset is leave-one-object-out cross-validation [49]. Specifically, in each round images
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Figure 8: 80 3-D objects from ETH-80 image set. Each row shows one category.

from 79 objects are used for training and images from the remaining one object are used

for testing. We compare the average classification accuracy of BCF to many other previous

approaches in Table 5. BCF gets a classification accuracy of 91.49% which outperforms

pervious state-of-the-art approach in [18].

4.6. Robustness to noise

In the above experiments, the shapes are quite smooth in these datasets. To evaluate the

performance of our descriptor under noisy conditions, we add Gaussian noise to shape bound-

aries and carry out image classification using BCF. We use the whole Mpeg-7 dataset [37] as

the original shape boundaries. Noise is added by perturbing all pixels on each shape contour

in both x- and y-coordinates by values drawn from a Gaussian random variable with zero

mean and standard derivation σ. As the parameter σ increases, we add increasing Gaussian

noise to the shape boundaries. Fig. 9 shows an example of shape boundaries with increasing

Gaussian noise. We report the classification accuracies using half for training and leaving

one out for testing as noise ratio σ varying from 0 to 1 in Fig. 10. Classification accuracy
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Table 5: Classification accuracy comparison on ETH-80 dataset [49].

Algorithm Classification accuracy

Color histogram [49] 64.86%

PCA gray [49] 82.99%

PCA masks [49] 83.41%

SC+DP [49] 86.40%

IDSC+DP [3] 88.11%

IDSC+Morphological strategy [54] 88.04%

Height function [55] 88.72%

Robust symbolic [17] 90.28%

Kernel-edit [18] 91.33%

BCF 91.49%

Figure 9: An example of shape boundaries with increasing Gaussian noise.

using half training drops about 4% when σ increases from 0 to 1, which shows that BCF is

robust to noise. This is due to the fact that both DCE and the shape context are robust to

noise.

4.7. The effect of codebook size

In this experiment, we do shape classification using shape codebooks of different sizes on

the full Mpeg-7 dataset. Shape classification accuracies of BCF using codebooks of different

sizes are reported in Fig. 11. Generally, shape classification accuracy improves as the size

of codebook increases, but gets saturated when codebook size increases to 1500.
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Figure 10: Classification accuracies on Mpeg-7 dataset are reported as noise ratio σ varying from 0 to 1

under both half for training setting and leave one out setting.
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Figure 11: Classification accuracies of using half for training and leaving one out for testing are reported as

size of codebook changing from 100 to 1800.
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Table 6: Classification accuracy before and after shape codebook exchanging

Mpeg-7 dataset Animal dataset

original 97.16±0.79% 83.40±1.30%

codebook exchanging 95.55±0.55% 82.40±1.07%

4.8. Generalization ability of shape codebook

In this experiment, we investigate the generalization ability of the shape codebook learned

by k-means. As the space of contour fragments of shapes is much smaller than the space of

local features of natural images, e.g., SIFT and HOG, we investigate whether it is possible

to learn a universal codebook of contour fragments for shape classification. Therefore,

we use the codebook learned from Mepg-7 dataset for descriptor coding, building shape

representation and performing shape classification on Animal dataset. We also use the

codebook learned from Animal dataset for descriptor coding, building shape representation

and performing shape classification on the Mepg-7 dataset. The sizes of both codebooks

are 1500. Except the codebook, all other experimental settings are the same. We call this

experiment “codebook exchanging”. Shape classification results (half shapes for training

for both datasets) are shown in Table 6. The results show that there is only about one

percentage drops in classification accuracy after codebook exchanging on both datasets.

These results show that the generalization ability of our shape codebook is very good. The

reason why codebook exchanging can work is that different datasets share lots of common

contour fragments. For example, the legs of a horse are very similar to the ones of a dog,

and the leaf of an apple may be very similar to the wing of a bat. The success of codebook

exchanging implies that we may use a universal shape codebook for all codebook-based

shape recognition system.

4.9. Image classification on Caltech 101 dataset

The Caltech 101 dataset contains 9144 images in 101 object classes including animals,

vehicles, flowers, etc, with significant variance in shape, color and texture, and a background

class. The number of images per category varies from 31 to 800. We follow the common
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(a) (b) (c) (d) (e) (f) 

Figure 12: Example images in Caltech 101 dataset in (a) and (d) together with their gPB edge maps [1] in

(b) and (e) and binary shapes obtained by post processing in (c) and (f).

experiment setup for Caltech 101, training on 30 images per class and testing on the rest,

and measure the performance using average accuracy over the 102 classes.

The color/gray images in Caltech 101 dataset are different from the binary shapes we

tested in the previous experiments. Now we show how to use the proposed BCF approach

to build an image representation for a color/gray image. Given a color/gray image, we first

compute its edge map using the gPB algorithm in [1] (some of the edge maps are shown in

Figure 12(b) and (e)), and set all the pixels on the edge map with their values larger than

0.1*255 as edge pixels. Then, the edge-linking algorithm in [56] is applied on the binary

edge image to retrieve a set of contours shown in Figure 12(c) and (f). Finally, steps (b)-(g)

in Fig. 1 are taken to build image representation. Similar to shape classification, we use

linear SVM for image classification.

Comparison with SIFT-based method. We directly compare our contour fragment feature in

BCF with dense SIFT feature in [9] using the same coding method (LLC), the same pooling

method (SPM), the codebooks of the same size (1024) in Table 7, and the same classifier

(linear SVM). The results of LLC [9] and RBC [57] are obtained by running the source code

released the authors. The performance of BCF with SPM is 54.5%, which is worse than

71.7% of the SIFT feature with LLC and SPM. Contour fragment feature performs worse
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Table 7: Classification accuracy on Caltech 101 dataset

Methods Average accuracy (%)

SVM-KNN [59] 66.2±0.4

SLRR [60] 73.6

LSGC [61] 75.1

LLC [9] 71.7±0.8

RBC [57] 75.6±0.8

Shape Context [57] 3.0±0.7

level 1×1 23.9±0.8

level 2×1 40.9±0.7

level 3×3 49.8±0.7

BCF level 4×4 51.7±1.2

pyramid 54.5±1.5

pyramid+LLC 75.4±0.8

pyramid+RBC 77.8±1.0

for two reasons: (1) some object contours (e.g., the outline of car in Fig. 12) and some object

parts (e.g., the noses of person in Fig. 12) are missing in the edge maps; even though the

edge maps are obtained by the state-of-the-art edge detector; (2) contextual information,

such as, the ground in car image and the grass and tree in the elephant image, cannot be

captured by our contour fragment feature. All this information is useful for recognition and

can be capture by SIFT feature. Although, BCF performs worse than SIFT, we show BCF

and SIFT feature are complementary to each other in Table 7. LLC [9] and RBC [57] are two

SIFT based approaches; by combining BCF with them using the simple LP-β method in [58],

the average image classification accuracy can be improved by 3.7% and 2.2%, respectively.

Comparison with previous shape-based method. We implemented shape context [44] method

for image classification by setting 16 reference points in binary edge image resulting 960-

dimensional feature vector. Then we use a linear SVM for image classification based on the
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shape context feature vector. The average image classification accuracy of shape context

feature is only 3%. Both shape context and BCF are pure shape-based method. By diving

contour into fragments and encoding their shape context features, BCF can obtain an average

classification accuracy of 54.5% which is a significant improvement. It means that BCF is

more robust to occlusions/edge-broken in real image than the previous shape descriptor.

The effectiveness of spatial pyramid. In Table 7, we show that from level 1×1 to 4×4 the

accuracy of BCF improves from 23.9% to 51.7%; by combining the four levels, the accuracy

of BCF (denoted as “pyramid”) is 54.5%. This shows that SPM is effective for BCF in

image classification.

We also quote some results from very recent literatures, e.g., [60, 61], and a classical

method called SVM-KNN in [59] in Table 7. In summary, we give comprehensive studies

of BCF for real image classification and show good performance by combining BCF with

SIFT-based methods, which is better than the most recent results in [60, 61].

5. Conclusions

In this paper, we present a novel shape representation called BCF for shape classification.

To the best of our knowledge, this is the first paper that introduces the idea of BoW

together with LLC and SPM for shape representation. Since BCF is a part-based model,

it is intrinsically robust to occlusion and deformation of shape. In the experiments, we

have extensively tested the performance of BCF; all these experimental results on shape

benchmarks show that BCF is able to achieve the state-of-the-art performance; moreover,

we have tested BCF for image classification on the real image dataset and stress it can

dramatically outperform the other shape-based method and is complementary to the texture

descriptor. In the future, we will study how to use BCF for object recognition in real image;

for example, on edge map extracted from real image, BCF can either do object recognition

by combining with sliding window method, or provide shape cue for other off-shelf object

detectors.
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